

MG3710A Vector Signal Generator

MX370x series software

MX3700xxA Waveform Pattern

MX370x Series Software

The MG3710A Vector Signal Generator supports up to two RF output connectors each with two waveform memories. One RF output connector can output two combined modulation signals, while two connectors can output four modulation signals. As a result, one MG3710A can output wanted + interference signals, wanted + delay signals, and multicarrier signals, which normally requires two vector signal generators, helping cut setup and operation times.

The MG3710A has a wide vector modulation bandwidth, large arbitrary waveform memory, and outputs digital modulation signals for major mobile communications technologies. Today's mobile communications are focused mainly on mobile telephones and wireless LAN and the MG3710A offers the ideal signal-generation functions and performance needed for the latest wideband wireless communications. The built-in arbitrary waveform generator outputs modulation signals simply by selecting the waveform pattern matching the required communication method.

The following four categories of waveform patterns are supported:

- Standard waveform patterns
- Waveform patterns generated by optional MX3700xxA Waveform Pattern software
- Waveform patterns generated by optional MX3701xxA IQproducer software
- Waveform patterns converted from data generated by common signal-generation software

Each category contains multiple waveform pattern files each with preset parameters for each system.

These default waveform patterns are saved on the MG3710A hard disk for easy access, but other waveform patterns are supported using the IQproducer waveform generation software.

Parameters for the waveform for the target communication system are set using a GUI to generate a waveform pattern file for the MG3710A. The embedded Windows application IQproducer saves generated arbitrary waveform pattern files to the internal hard disk and signals are output simply by selecting the waveform pattern. In addition, a user-generated custom IQ sample file in ASCII format created by common Electronic Design Automation (EDA) software such as MATLAB, can be converted into a custom waveform pattern file for the MG3710A.

Maximum Waveform Pattern Size and Required Options for Simultaneous Use

- 1stRF (Opt. 032/034/036)

Combination of Baseband Signal (Opt. 048)	ARB Memory Upgrade 256 Msample (Opt. 045) ARB Memory Upgrade 1024 Msample (Opt. 046)		
	W/O	With Opt. 045	With Opt. 046
W/O	64 Msamples × 1 pc	256 Msamples × 1 pc	1024 Msamples × 1 pc ^{*1}
With Opt. 048 ^{*2}	64 Msamples × 2 pcs 128 Msamples × 1 pc	256 Msamples × 2 pcs 512 Msamples × 1 pc	1024 Msamples × 2 pcs ^{*1}

- 2ndRF (Opt. 062/064/066)

Combination of Baseband Signal (Opt. 078)	ARB Memory Upgrade 256 Msample (Opt. 075) ARB Memory Upgrade 1024 Msample (Opt. 076)		
	W/O	With Opt. 075	With Opt. 076
W/O	64 Msamples × 1 pc	256 Msamples × 1 pc	1024 Msamples × 1 pc ^{*1}
With Opt. 078 ^{*2}	64 Msamples × 2 pcs 128 Msamples × 1 pc	256 Msamples × 2 pcs 512 Msamples × 1 pc	1024 Msamples × 2 pcs ^{*1}

*1: The maximum size per waveform pattern supported by the MG3710A varies with the IQproducer version.

*2: The Baseband Signal Combine option supports two arbitrary waveform memories and can either set two different waveform patterns or combine them as one memory to support one large waveform pattern.

• Selection Guide

Communication System		Page	LTE (FDD)	LTE-Advanced (FDD)	LTE (TDD)	LTE-Advanced (TDD)	W-CDMA	HSDPA (Test Model5)	HSDPA/HSUPA	1xEV-DO	CDMA2000	GSM/EDGE	TD-SCDMA	Advanced-PHS	PHS	PDC	ETC/DSRC	Digital Broadcast (BS/CS/CATV/ISDB-T)	Digital Broadcast (DVB-T/H)	WLAN (IEEE802.11a/b/g)	WLAN (IEEE802.11n/p/a/b/g/i)	WLAN (IEEE802.11ac)	DFS (TELEC, FCC)	DFS (ETSI)	Mobile WiMAX (IEEE802.16e)	Bluetooth	GPS, GLONASS, QZSS	RCR STD-39	ARIB STD-T61/T79/T86	ARIB STD-T98/T102/B54	APCO P25, NXDN, DMR, TETRA
Waveform Pattern	Preinstalled		✓	✓			✓	✓		✓	✓	✓			✓	✓		✓													
MX370073A DFS (TELEC, FCC)		28																													
MX370075A DFS (ETSI)		30																													
Standard accessories AWGN																															
Standard accessories W-CDMA							✓																								
MX370101A HSDPA/HSUPA							✓		✓																						
MX370102A TDMA																	✓	✓	✓	✓											
MX370103A CDMA2000 1xEV-DO									✓																						
MX370104A Multi-carrier			Multi-carrier IQproducer is software that generates the multi carrier signal based on waveform pattern of various telecommunications systems.																							✓					
MX370105A Mobile WiMAX																															
MX370106A DVB-T/H																															
MX370107A Fading			Fading IQproducer is software that generates the Fading signal based on waveform pattern of various telecommunication systems.																												
MX370108A LTE FDD			✓																												
MX370108A-001 ^{*2} LTE-Advanced FDD				✓																											
MX370110A LTE TDD					✓																										
MX370110A-001 ^{*3} LTE-Advanced TDD						✓																									
MX370111A WLAN																															
MX370111A-002 ^{*4} 802.11ac (160 MHz)																															
MX370112A TD-SCDMA															✓																

*1: Read the MX3701xxA IQproducer series catalog.

*2: Requires MX370108A.

*3: Requires MX370110A.

*4: Requires MX370111A.

*5: Sample waveform patterns for each communication system can be downloaded from the Anritsu software download site (requires user and MG3740A product registration).
<<https://my.anritsu.com/home>>

*6: Sample waveform patterns for each communication system can be downloaded from the Anritsu software download site (requires user and MG3710A product registration).
<<https://my.anritsu.com/home>>

• IQproducer Support Systems

Standard Accessories	W-CDMA IQproducer
	AWGN IQproducer
	MX370101A HSDPA/HSUPA IQproducer
	MX370102A TDMA IQproducer
	MX370103A CDMA2000 1xEV-DO IQproducer
	MX370104A Multi-carrier IQproducer
	MX370105A Mobile WiMAX IQproducer
	MX370106A DVB-T/H IQproducer
	MX370107A Fading IQproducer
	MX370108A LTE FDD IQproducer
	MX370108A-001 LTE-Advanced FDD Option
	MX370110A LTE TDD IQproducer
	MX370110A-001 LTE-Advanced TDD Option
	MX370111A WLAN IQproducer
	MX370111A-002 802.11ac (160 MHz) Option
	MX370112A TD-SCDMA IQproducer

• IQproducer™ is a registered trademark of Anritsu Corporation.

• MATLAB® is a registered trademark of The MathWorks, Inc.

• CDMA2000® is a registered trademark of the Telecommunications Industry Association (TIA-USA).

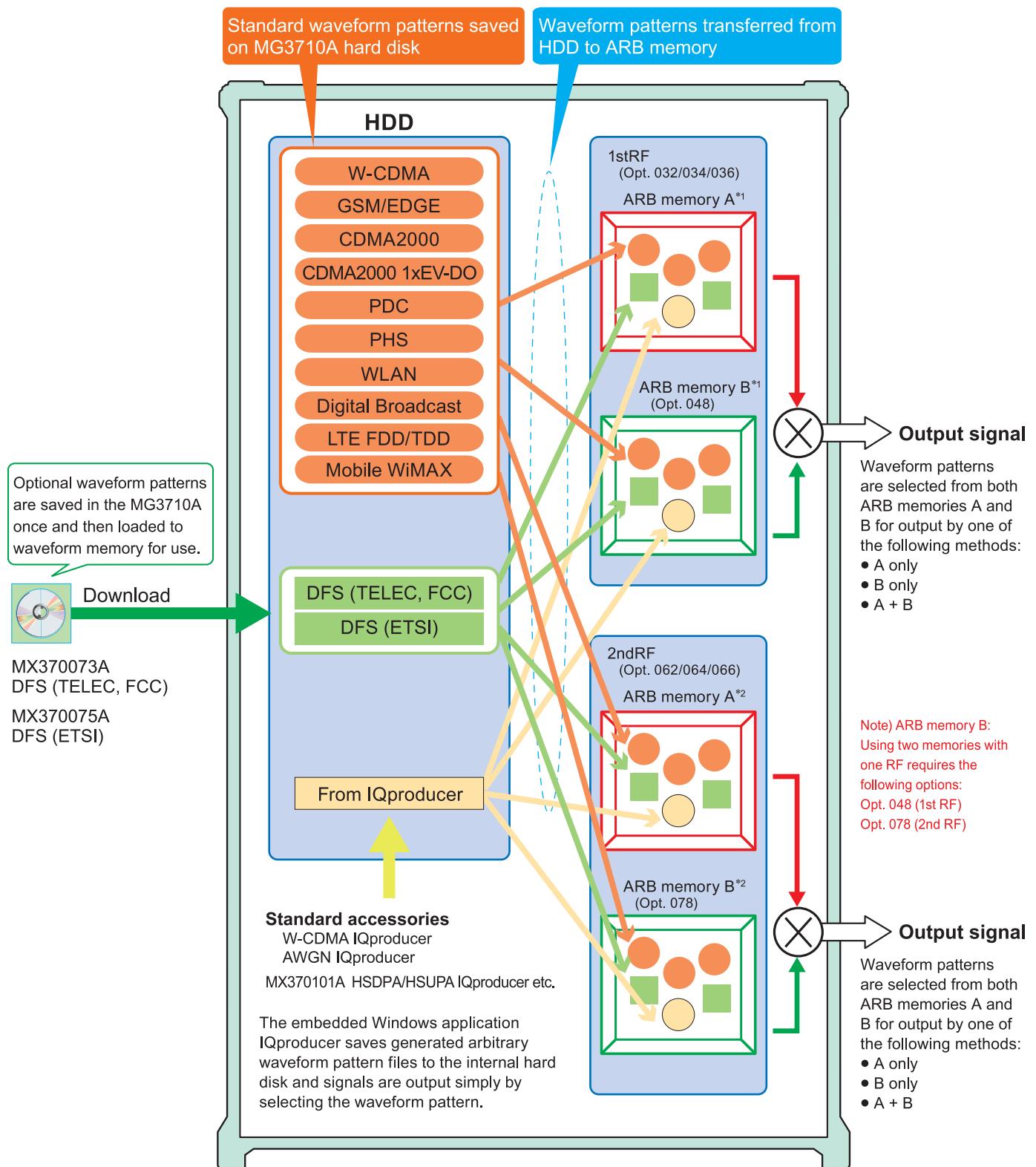
• WiMAX® is a trademark or registered trademark of WiMAX Forum.

• The *Bluetooth*® mark and logos are owned by Bluetooth SIG, Inc. and are used by Anritsu under license.

• Windows® is a registered trademark of Microsoft Corporation in the USA and other countries.

• Pentium® is registered trademarks of Intel Corporation or its subsidiaries in the USA and other countries.

• Other companies, product names and service names are registered trademarks of their respective companies.


• IQproducer Operating Environment

OS	Windows 2000 Professional ^{*1} , Windows XP, Windows Vista ^{*2} , Windows 7 Enterprise (32-bit), Windows 7 Professional (32-bit/64-bit) ^{*2}
CPU	Pentium III 1 GHz equivalent or faster
Memory	512 MB or more
Hard Disk	5 GB or more free space in the drive where this software is to be installed. The free hard disk space necessary to create waveform pattern varies depending on the waveform pattern size. The free disk space of 27 GB or greater is required to create four maximum (512 Msamples) waveform patterns.

*1: Does not support IQproducer Version 13.00 and later

*2: Supports IQproducer Version 12.00 and later

MG3710A Vector Signal Generator

*1: 1stRF ARB memory size

256 MB × 1 pc = 64 Msamples (Std.)

1 GB × 1 pc = 256 Msamples × 1 pc (Opt. 045)

1 GB × 2 pcs = 256 Msamples × 2 pcs (Opt. 045 + Opt. 048)

4 GB × 1 pc = 1024 Msamples × 1 pc (Opt. 046)

4 GB × 2 pcs = 1024 Msamples × 2 pcs (Opt. 046 + Opt. 048)

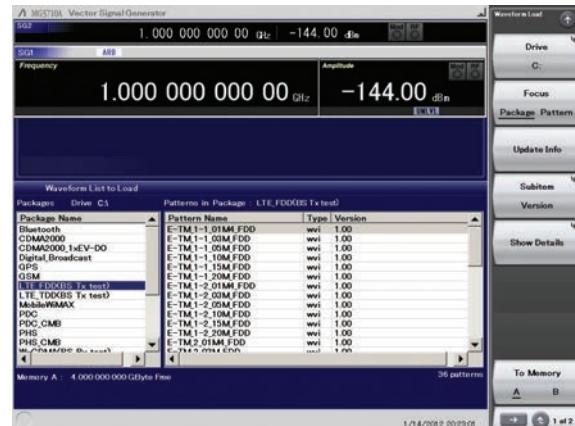
*2: 2ndRF ARB memory size

256 MB × 1 pc = 64 Msamples (Std.)

1 GB × 1 pc = 256 Msamples × 1 pc (Opt. 075)

1 GB × 2 pcs = 256 Msamples × 2 pcs (Opt. 075 + Opt. 078)

4 GB × 1 pc = 1024 Msamples × 1 pc (Opt. 076)


4 GB × 2 pcs = 1024 Msamples × 2 pcs (Opt. 076 + Opt. 078)

LTE Waveform Patterns

Standard

LTE Waveform Patterns

The LTE FDD and LTE TDD waveform patterns listed in the table below are stored on the MG3710A internal hard disk. Modulation signals for evaluating the Tx characteristics of a base station amplifier are output simply by selecting a pre-saved standard waveform pattern. If another signal is required, use the MX37010A LTE IQproducer (for FDD) or MX370110A LTE TDD IQproducer to create and save the custom waveform pattern.

Selecting Waveform Pattern

LTE FDD Waveform Patterns List

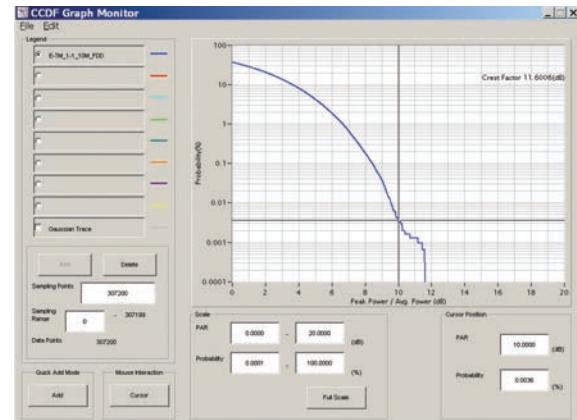
Waveform Patterns	Bandwidth	Test Model	Evaluation	File Size [MB]
E-TM_1-1_01M4_FDD	1.4 MHz	E-TM1.1		0.2
E-TM_1-1_03M_FDD	3 MHz			0.3
E-TM_1-1_05M_FDD	5 MHz			0.6
E-TM_1-1_10M_FDD	10 MHz			1.2
E-TM_1-1_15M_FDD	15 MHz			1.2
E-TM_1-1_20M_FDD	20 MHz			2.4
E-TM_1-2_01M4_FDD	1.4 MHz	E-TM1.2		0.2
E-TM_1-2_03M_FDD	3 MHz			0.3
E-TM_1-2_05M_FDD	5 MHz			0.6
E-TM_1-2_10M_FDD	10 MHz			1.2
E-TM_1-2_15M_FDD	15 MHz			1.2
E-TM_1-2_20M_FDD	20 MHz			2.4
E-TM_2_01M4_FDD	1.4 MHz	E-TM2		0.2
E-TM_2_03M_FDD	3 MHz			0.3
E-TM_2_05M_FDD	5 MHz			0.6
E-TM_2_10M_FDD	10 MHz			1.2
E-TM_2_15M_FDD	15 MHz			1.2
E-TM_2_20M_FDD	20 MHz			2.4
E-TM_3-1_01M4_FDD	1.4 MHz	E-TM3.1		0.2
E-TM_3-1_03M_FDD	3 MHz			0.3
E-TM_3-1_05M_FDD	5 MHz			0.6
E-TM_3-1_10M_FDD	10 MHz			1.2
E-TM_3-1_15M_FDD	15 MHz			1.2
E-TM_3-1_20M_FDD	20 MHz			2.4
E-TM_3-2_01M4_FDD	1.4 MHz	E-TM3.2		0.2
E-TM_3-2_03M_FDD	3 MHz			0.3
E-TM_3-2_05M_FDD	5 MHz			0.6
E-TM_3-2_10M_FDD	10 MHz			1.2
E-TM_3-2_15M_FDD	15 MHz			1.2
E-TM_3-2_20M_FDD	20 MHz			2.4
E-TM_3-3_01M4_FDD	1.4 MHz	E-TM3.3		0.2
E-TM_3-3_03M_FDD	3 MHz			0.3
E-TM_3-3_05M_FDD	5 MHz			0.6
E-TM_3-3_10M_FDD	10 MHz			1.2
E-TM_3-3_15M_FDD	15 MHz			1.2
E-TM_3-3_20M_FDD	20 MHz			2.4

* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller. Consider this when selecting the ARB memory upgrade option.

LTE TDD Waveform Patterns List

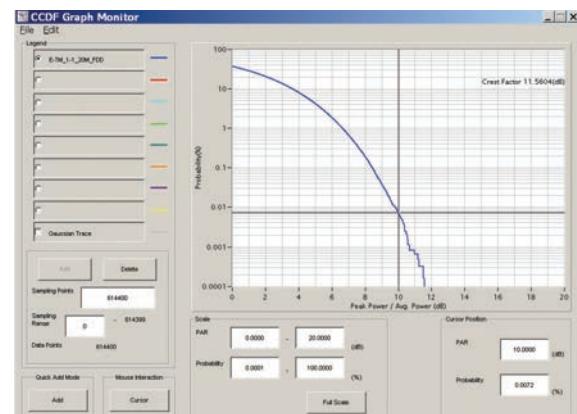
Waveform Patterns	Bandwidth	Test Model	Evaluation	File Size [MB]
E-TM_1-1_01M4_TDD	1.4 MHz	E-TM1.1		0.3
E-TM_1-1_03M_TDD	3 MHz			1.2
E-TM_1-1_05M_TDD	5 MHz			1.2
E-TM_1-1_10M_TDD	10 MHz			2.4
E-TM_1-1_15M_TDD	15 MHz			2.4
E-TM_1-1_20M_TDD	20 MHz			4.7
E-TM_1-2_01M4_TDD	1.4 MHz	E-TM1.2		0.3
E-TM_1-2_03M_TDD	3 MHz			1.2
E-TM_1-2_05M_TDD	5 MHz			1.2
E-TM_1-2_10M_TDD	10 MHz			2.4
E-TM_1-2_15M_TDD	15 MHz			2.4
E-TM_1-2_20M_TDD	20 MHz			4.7
E-TM_2_01M4_TDD	1.4 MHz	E-TM2		0.3
E-TM_2_03M_TDD	3 MHz			1.2
E-TM_2_05M_TDD	5 MHz			1.2
E-TM_2_10M_TDD	10 MHz			2.4
E-TM_2_15M_TDD	15 MHz			2.4
E-TM_2_20M_TDD	20 MHz			4.7
E-TM_3-1_01M4_TDD	1.4 MHz	E-TM3.1		0.3
E-TM_3-1_03M_TDD	3 MHz			1.2
E-TM_3-1_05M_TDD	5 MHz			1.2
E-TM_3-1_10M_TDD	10 MHz			2.4
E-TM_3-1_15M_TDD	15 MHz			2.4
E-TM_3-1_20M_TDD	20 MHz			4.7
E-TM_3-2_01M4_TDD	1.4 MHz	E-TM3.2		0.3
E-TM_3-2_03M_TDD	3 MHz			1.2
E-TM_3-2_05M_TDD	5 MHz			1.2
E-TM_3-2_10M_TDD	10 MHz			2.4
E-TM_3-2_15M_TDD	15 MHz			2.4
E-TM_3-2_20M_TDD	20 MHz			4.7
E-TM_3-3_01M4_TDD	1.4 MHz	E-TM3.3		0.3
E-TM_3-3_03M_TDD	3 MHz			1.2
E-TM_3-3_05M_TDD	5 MHz			1.2
E-TM_3-3_10M_TDD	10 MHz			2.4
E-TM_3-3_15M_TDD	15 MHz			2.4
E-TM_3-3_20M_TDD	20 MHz			4.7

LTE Waveform Patterns


Standard

Adjacent Channel Leakage Power Ratio (ACPR)

The ACPR of a Vector Signal Generator is an important function for testing device distortion and receiver interference.


LTE FDD ACPR
(E-TM1-1, 1 Carrier, 10 MHz BW)
Waveform Pattern: E-TM_1-1_10M_FDD

LTE FDD CCDF
(E-TM1-1, 1 Carrier, 10 MHz BW)
Waveform Pattern: E-TM_1-1_10M_FDD

LTE FDD ACPR
(E-TM1-1, 1 Carrier, 20 MHz BW)
Waveform Pattern: E-TM_1-1_20M_FDD

LTE FDD CCDF
(E-TM1-1, 1 Carrier, 20 MHz BW)
Waveform Pattern: E-TM 1-1 20M FDD

W-CDMA Waveform Patterns

Standard

W-CDMA Waveform Patterns

The following W-CDMA waveform patterns are stored on the MG3710A internal hard disk. Details for each pattern file is given on the next page.

- For Evaluating Base Station Transmitter Devices
(TS 25.141 Test Model 1 to 6)

TestModel_1_16DPCH
TestModel_1_32DPCH
TestModel_1_64DPCH
TestModel_1_64x2_10M
TestModel_1_64x2_15M
TestModel_2
TestModel_3_16DPCH
TestModel_3_32DPCH
TestModel_4
TestModel_5_2HSPDSCH
TestModel_5_4HSPDSCH
TestModel_5_8HSPDSCH
TestModel_6_8HSPDSCH
TestModel_1_64DPCHx2
TestModel_1_64DPCHx3
TestModel_1_64DPCHx4

- For Testing BS Receiver Performance
(TS 25.101/ 25.104 UL RMC 12.2 to 384 kbps)

UL_RMC_12_2kbps
UL_RMC_12_2kbps_ACS
UL_RMC_64kbps
UL_RMC_144kbps
UL_RMC_384kbps
UL_AMR_TFCs1
UL_AMR_TFCs2
UL_AMR_TFCs3
UL_ISDN
UL_64kbps_Packet
UL_Interfere
UL_Interfere_ov3

- For Evaluating UE Transmitter Devices
(TS 25.101 A2.1)

UL_RMC_12_2kbps_TX

- For Testing UE Receiver Performance
(TS 25.101 DL RMC 12.2 to 384 kbps)

DL_RMC_12_2kbps_RX
DL_RMC_12_2kbps
DL_RMC_12_2kbps_MIL
DL_RMC_12_2kbps_ACS
DL_RMC_64kbps
DL_RMC_144kbps
DL_RMC_384kbps
DL_AMR_TFCs1
DL_AMR_TFCs2
DL_AMR_TFCs3
DL_ISDN
DL_384kbps_Packet
DL_Interfere
DL_Interfere_ov3
DL_CPiCH
P_CCPCH

Uplink and downlink W-CDMA modulation signals conforming to the 3GPP (FDD) standards can be output simply by selecting the waveform from the patterns on the MG3710A internal hard disk without setting any complex 3GPP-compliant parameters.

Selecting Waveform Pattern

W-CDMA Waveform Patterns

Standard

• W-CDMA Waveform Patterns List

Waveform Patterns	UL/DL	Channel	3GPP (Release1999)	Evaluation	File Size [MB]
UL_RMC_12_2kbps*1	UL	DPCCH, DPDCH	TS 25.141 A.2	BS Rx Test	449.2
UL_RMC_12_2kbps_ACS*2		DPCCH, DPDCH			598.9
UL_RMC_64kbps*2		DPCCH, DPDCH	TS 25.141 A.3		898.3
UL_RMC_144kbps*2		DPCCH, DPDCH	TS 25.141 A.4		898.3
UL_RMC_384kbps*2		DPCCH, DPDCH	TS 25.141 A.5		898.3
UL_AMR_TFCS1*1		DPCCH, DPDCH			449.2
UL_AMR_TFCS2*1		DPCCH, DPDCH			449.2
UL_AMR_TFCS3*1		DPCCH, DPDCH	TS 25.944 4.1.2		449.2
UL_ISDN*2		DPCCH, DPDCH			898.3
UL_64kbps_Packet*1		DPCCH, DPDCH			449.2
UL_Interfere		DPCCH, DPDCH			0.6
UL_Interfere_ov3*3		DPCCH, DPDCH			0.5
UL_RMC_12_2kbps_TX*2		DPCCH, DPDCH	TS 25.101 A.2.1	UE Tx Device Test	449.2
P_CCPCH*2	DL	P-CCPCH	TS 25.944 4.1.1*4	UE Rx Test	150.0
DL_RMC_12_2kbps_RX*3		P-CPICH, SCH, PICH, DPCH	TS 25.101 A.3.1		149.8
DL_RMC_12_2kbps_ACS*2		P-CPICH, SCH, PICH, DPCH, P-CCPCH	TS 25.101 C.3.1		598.9
DL_RMC_12_2kbps_MIL*3		P-CPICH, SCH, PICH, DPCH, OCNS			149.8
DL_RMC_12_2kbps*3		P-CPICH, SCH, PICH, DPCH, OCNS	TS 25.101 A.3.1/C3.2		149.8
DL_RMC_64kbps*3		P-CPICH, SCH, PICH, DPCH, OCNS	TS 25.101 A.3.2/C3.2		149.8
DL_RMC_144kbps*3		P-CPICH, SCH, PICH, DPCH, OCNS	TS 25.101 A.3.3/C3.2		149.8
DL_RMC_384kbps*3		P-CPICH, SCH, PICH, DPCH, OCNS	TS 25.101 A.3.4/C3.2		74.9
DL_AMR_TFCS1*3		P-CPICH, SCH, PICH, DPCH, OCNS			149.8
DL_AMR_TFCS2*3		P-CPICH, SCH, PICH, DPCH, OCNS	TS 25.944 4.1.1.3		149.8
DL_AMR_TFCS3*3		P-CPICH, SCH, PICH, DPCH, OCNS	TS 25.101 C.3.2		149.8
DL_ISDN*1, *3		P-CPICH, SCH, PICH, DPCH, OCNS			299.5
DL_384kbps_Packet*3		P-CPICH, SCH, PICH, DPCH, OCNS			74.9
DL_Interfere		P-CPICH, P-CCPCH, SCH, PICH, OCNS			0.6
DL_Interfere_ov3*7		P-CPICH, P-CCPCH, SCH, PICH, OCNS	TS 25.101 C.4		0.5
DL_CPICH		P-CPICH	–		0.6
TestModel_1_16DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 16DPCH		BS Tx Device Test	0.6
TestModel_1_32DPCH		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 32DPCH			0.6
TestModel_1_64DPCH		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64DPCH			0.6
TestModel_1_64DPCHx2*5		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64DPCH			1.2
TestModel_1_64DPCHx3*6		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64DPCH			4.7
TestModel_1_64DPCHx4*6		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64DPCH			2.4
TestModel_1_64x2_10M*5, *6		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64DPCH			2.0
TestModel_1_64x2_15M*5, *6		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64DPCH			2.0
TestModel_2		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 3DPCH			0.6
TestModel_3_16DPCH		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 16DPCH			0.6
TestModel_3_32DPCH		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 32DPCH			0.6
TestModel_4		P-CCPCH, SCH			0.6
TestModel_5_2HSPDSCH		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 6DPCH, HS-SCCH, 2HS-PDSCH			0.6
TestModel_5_4HSPDSCH		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 14DPCH, HS-SCCH, 4HS-PDSCH			0.6
TestModel_5_8HSPDSCH		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 30DPCH, HS-SCCH, 8HS-PDSCH			0.6
TestModel_6_8HSPDSCH		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 30DPCH, HS-SCCH, 8HS-PDSCH	TS 25.141 8.2.0		0.6

*1: To use this waveform pattern, Combination of Baseband Signal (option), ARB Memory Upgrade 256 Msample (option), or ARB Memory Upgrade 1024 Msample (option), is required.

*2: To use this waveform pattern, ARB Memory Upgrade 256 Msample (option) or ARB Memory Upgrade 1024 Msample (option), is required.

*3: Since waveform patterns (excluding DL_RMC12_2kbps_ACS) for the UE RX test do not include P-CCPCH, they must be used in combination with a P-CCPCH waveform pattern.

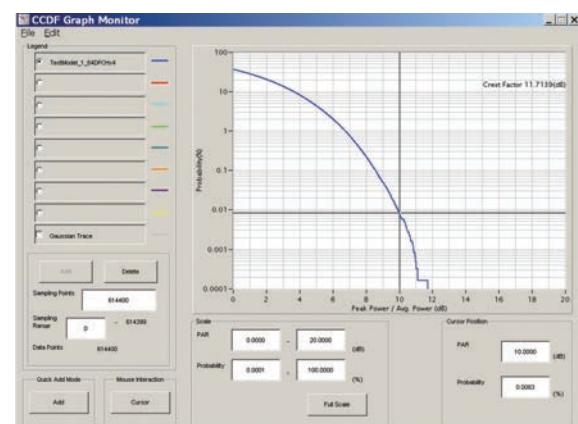
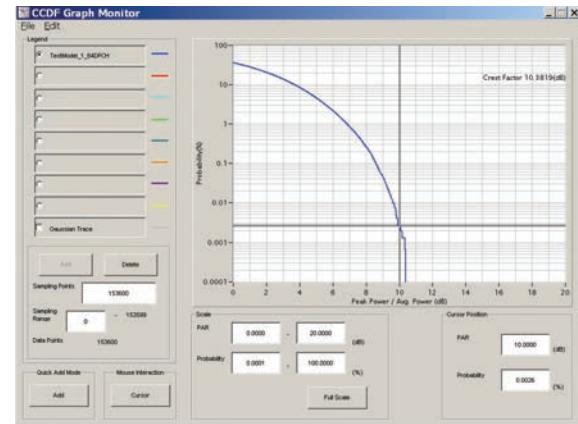
*4: An 11-bit SFN is added to the head of each BCH Transport block.

*5: x2, x3, and x4 indicate the number of multicarriers 2, 3, and 4, respectively.

*6: 10M and 15M indicate the frequency spacing values of the multi-carrier.

*7: When the Combination of Baseband Signal option is installed in MG3710A, select a waveform pattern generated using the W-CDMA waveform pattern generation function of the MG3710A IQproducer or by the MX370101A HSDPA IQproducer (only the waveform patterns that can be configured using only one memory) for memory A on the MG3710A while selecting this pattern for memory B to output a signal that is generated by adding the desired signal and the interference signal using baseband.

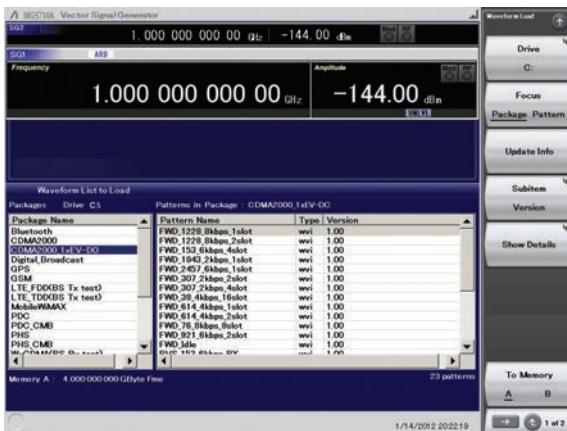
* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.



Consider this when selecting the ARB memory upgrade option.

Adjacent Channel Leakage Power Ratio (ACPR)

The ACPR of a Vector Signal Generator is an important function for testing device distortion and receiver interference.

Complementary Cumulative Distribution Function (CCDF)



CDMA2000 1xEV-DO Waveform Patterns

Standard

CDMA2000 1xEV-DO Waveform Patterns

The CDMA2000 1xEV-DO waveform patterns listed opposite are stored on the MG3710A internal hard disk. The 3GPP2 signals specified for testing receivers and transmitters of CDMA2000 1xEV-DO access networks (base station) and access terminal (AT) are output by selecting one of the 13 forward and 10 reverse data rate patterns. When multi-carrier signals, mixed idle and active signals and/or multi-user signals are required, the optional MX370103A CDMA2000 1xEV-DO IQproducer application, software can be used to set parameters and generate waveform patterns.

Selecting Waveform Pattern

- Access Terminal (AT) Receiver Test

CDMA2000 1xEV-DO forward

Baseband filter: IS-95 SPEC +EQ

Data: PN15 fix*1 (excluding FWD-Idle)

FWD_38_4kbps_16slot

FWD_76_8kbps_8slot

FWD_153_6kbps_4slot

FWD_307_2kbps_2slot

FWD_614_4kbps_1slot

FWD_307_2kbps_4slot

FWD_614_4kbps_2slot

FWD_1228_8kbps_1slot

FWD_921_6kbps_2slot

FWD_1843_2kbps_1slot

FWD_1228_8kbps_2slot

FWD_2457_6kbps_1slot

FWD_Idle*2

- Access Network (AN) Receiver Test

CDMA2000 1xEV-DO Reverse

Baseband filter: IS-95 SPEC

Data: PN9 fix*1

RVS_9_6kbps_RX

RVS_19_2kbps_RX

RVS_38_4kbps_RX

RVS_76_8kbps_RX

RVS_153_6kbps_RX

RVS_9_6kbps_TX

RVS_19_2kbps_TX

RVS_38_4kbps_TX

RVS_76_8kbps_TX

RVS_153_6kbps_TX

- Access Terminal (AT) Receiver Test

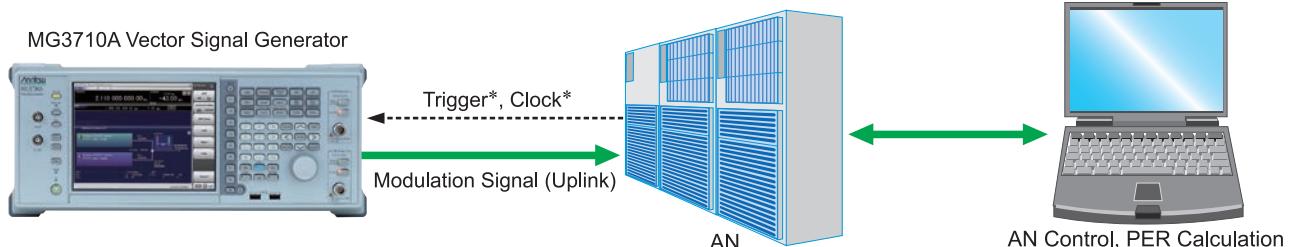
3GPP2 C.S0033 standard receiver tests (PER: Packet Error Rate) can be performed by selecting a forward signal pattern for testing the AT.

Since protocols are not supported for the access network simulator and all transmission channels are traffic, while all other channels (Sync, etc.) are unsupported., an external controller (PC) must be used to control the AT and calculate the PER.

MG3710A Vector Signal Generator

Modulation Signal (Downlink)

AT



AT Control, PER Calculation

- Access Network (AN) Receiver Test

3GPP2 C.S0032 standard receiver tests (PER: Packet Error Rate) can be performed by selecting a reverse signal pattern required for testing the AN.

Since access terminal simulator protocols are unsupported, an external controller must be used to control the AN and calculate PER.

* Trigger: Timing for synchronizing start of frame (frame trigger)

* Clock: Clock for synchronizing chip rate of 1.2288 Mcps (11 × 1.2288 MHz or 5 MHz/10 MHz)

- List of Traffic Channel Parameters for Forward Link Patterns

1xEV-DO Waveform Patterns	Data Rate (kbps)	Slot	Packet (Bit)	Preamble (Chip)	Modulation Type	File Size [MB]
FWD_38_4kbps_16slot	38.4	16	1024	1024	QPSK	2.0
FWD_76_8kbps_8slot	76.8	8	1024	512	QPSK	2.0
FWD_153_6kbps_4slot	153.6	4	1024	256	QPSK	2.0
FWD_307_2kbps_2slot	307.2	2	1024	128	QPSK	2.0
FWD_614_4kbps_1slot	614.4	1	1024	64	QPSK	2.0
FWD_307_2kbps_4slot	307.2	4	2048	128	QPSK	2.0
FWD_614_4kbps_2slot	614.4	2	2048	64	QPSK	2.0
FWD_1228_8kbps_1slot	1228.8	1	2048	64	QPSK	2.0
FWD_921_6kbps_2slot	921.6	2	3072	64	8-PSK	2.0
FWD_1843_2kbps_1slot	1843.2	1	3072	64	8-PSK	2.0
FWD_1228_8kbps_2slot	1228.8	2	4096	64	16QAM	2.0
FWD_2457_6kbps_1slot	2457.6	1	4096	64	16QAM	2.0

- List of Modulation Parameters for Reverse Waveform Pattern

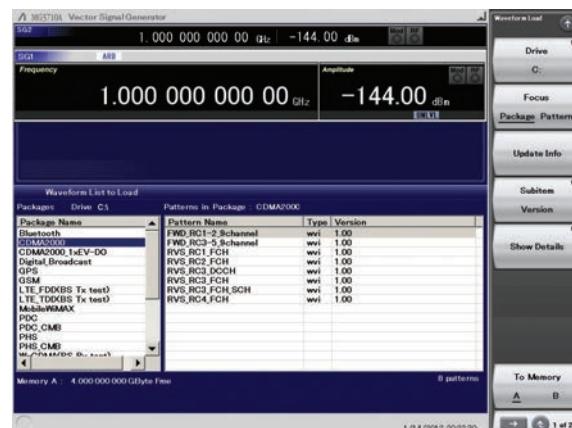
1xEV-DO Waveform Patterns	Data Rate (kbps)	RRI Symbol	DRC Value	DRC Cover	ACK ChannelBit	Long Code Mask	Data/Pilot	RRI/Pilot	DRC/Pilot	ACK/Pilot	File Size [MB]
RVS_9_6kbps_RX	9.6	001	0x01	W ₀ ⁸	0	MI=0x3FF00000000 MQ=0x3FE00000001	3.75 dB	0 dB	3.0 dB	0.0 dB	1.5
RVS_19_2kbps_RX	19.2	010	0x01	W ₀ ⁸	0		6.75 dB	0 dB	3.0 dB	0.0 dB	1.5
RVS_38_4kbps_RX	38.4	011	0x01	W ₀ ⁸	0		9.75 dB	0 dB	3.0 dB	0.0 dB	1.5
RVS_76_8kbps_RX	76.8	100	0x01	W ₀ ⁸	0		13.25 dB	0 dB	3.0 dB	0.0 dB	1.5
RVS_153_6kbps_RX	153.6	101	0x01	W ₀ ⁸	0		18.50 dB	0 dB	3.0 dB	0.0 dB	1.5
RVS_9_6kbps_TX	9.6	001	0x01	W ₀ ⁸	0		3.75 dB	0 dB	3.0 dB	3.0 dB	1.5
RVS_19_2kbps_TX	19.2	010	0x01	W ₀ ⁸	0		6.75 dB	0 dB	3.0 dB	3.0 dB	1.5
RVS_38_4kbps_TX	38.4	011	0x01	W ₀ ⁸	0		9.75 dB	0 dB	3.0 dB	3.0 dB	1.5
RVS_76_8kbps_TX	76.8	100	0x01	W ₀ ⁸	0		13.25 dB	0 dB	3.0 dB	3.0 dB	1.5
RVS_153_6kbps_TX	153.6	101	0x01	W ₀ ⁸	0		18.50 dB	0 dB	3.0 dB	3.0 dB	1.5

* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.

Consider this when selecting the ARB memory upgrade option.

CDMA2000 Waveform Patterns

Standard


CDMA2000 Waveform Patterns

The CDMA2000 waveform patterns listed in the table below are stored on the MG3710A internal hard disk. The 3GPP2 C.S0002-0-2-specified CDMA2000 modulation signals are output by selecting one of these CDMA2000 waveform patterns.

Reverse channel signals are output by channel coding (convolutional coding, etc.) 4-frame length PN9 fix^{*1} data, which is useful for measuring the Frame Error Rate (FER)^{*2} of base stations and evaluating devices.

*1: Since the data length is not an integer multiple of the PN sequence length (511 bits for PN9), the PN sequence becomes discontinuous at the end.

*2: This is the case when the timing signal and 1.2288 Mcps \times 11 clock signal (or 5 or 10 MHz reference clock) can be input from the test target base station to the MG3710A in order to synchronize the frame start point and chip clock.

Selecting Waveform Pattern

Waveform Patterns	System	Frame Coding	Symbol Data	File Size [MB]
RVS_RC1_FCH	CDMA2000 1XRTT RC1 Reverse	Coded	FCH 9.6 kbps	1.5
RVS_RC2_FCH	CDMA2000 1XRTT RC2 Reverse	Coded	FCH 14.4 kbps	1.5
RVS_RC3_FCH	CDMA2000 1XRTT RC3 Reverse	Coded	PICH, FCH 9.6 kbps	1.5
RVS_RC3_FCH_SCH	CDMA2000 1XRTT RC3 Reverse	Coded	PICH, FCH 9.6 kbps, SCH 9.6 kbps	1.5
RVS_RC3_DCCH	CDMA2000 1XRTT RC3 Reverse	Coded	PICH, DCCH 9.6 kbps	1.5
RVS_RC4_FCH	CDMA2000 1XRTT RC4 Reverse	Coded	PICH, FCH 14.4 kbps	1.5
FWD_RC1-2_9channel	CDMA2000 1XRTT RC1, RC2 Forward	Spreading only	PICH, SyncCH, PagingCH, FCH 19.2 kbps \times 6	1.5
FWD_RC3-5_9channel	CDMA2000 1XRTT RC3, RC4, RC5 Forward	Spreading only	PICH, SyncCH, PagingCH, FCH 38.4 kbps \times 6	1.5

* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.

Consider this when selecting the ARB memory upgrade option.

Waveform Patterns	Walsh Code	Code Power	Data Rate	Data
RVS_RC1_FCH	R-FCH		9.6 kbps	PN9fix*
RVS_RC2_FCH	R-FCH		14.4 kbps	PN9fix*
RVS_RC3_FCH	R-PICH R-FCH	0 4	-5.278 dB -1.528 dB	N/A 9.6 kbps
RVS_RC3_FCH_SCH	R-PICH R-FCH R-SCH	0 4 2	-7.5912 dB -3.8412 dB -3.8412 dB	N/A 9.6 kbps 9.6 kbps
RVS_RC3_DCCH	R-PICH R-DCCH	0 8	-5.278 dB -1.528 dB	N/A 9.6 kbps
RVS_RC4_FCH	R-PICH R-FCH	0 4	-5.278 dB -1.528 dB	N/A 14.4 kbps
Waveform Patterns	Walsh Code	Code Power	Symbol Rate	Symbol Data
FWD_RC1-2_9channel	F-PICH F-SyncCH PagingCH F-FCH \times 6	0 32 1 8-13	-7.0 dB -13.3 dB -7.3 dB -10.3 dB	N/A 4.8 kbps 19.2 kbps 19.2 kbps
FWD_RC3-5_9channel	F-PICH F-SyncCH PagingCH F-FCH \times 6	0 32 1 8-13	-7.0 dB -13.3 dB -7.3 dB -10.3 dB	N/A 4.8 kbps 19.2 kbps 38.4 kbps

R-PICH: Reverse Pilot Channel

R-FCH: Reverse Fundamental Channel

R-SCH: Reverse Supplemental Channel

R-DCCH: Reverse Dedicated Control Channel

F-PICH: Forward Pilot Channel

F-SyncCH: Forward Sync Channel

PagingCH: Paging Channel

F-FCH: Forward Fundamental Channel

GSM/EDGE Waveform Patterns

Standard

GSM/EDGE Waveform Patterns

The GSM/EDGE waveform patterns listed in the table below are stored on the MG3710A internal hard disk. Details for the pattern files are given below.

Signals for testing receivers and for evaluating devices in a GSM/EDGE system are output by selecting one of these GSM/EDGE waveform patterns.

- **GMSK_PN9, 8PSK_PN9**

PN9 data which doesn't have slot format is inserted.

- **GMSK_TN0, 8PSK_TN0**

PN9 data is inserted into the entire area of the slots, except the guard. The PN9 data in each slot is continuous.

- **NB_GMSK, NB_ALL_GMSK, NB_8PSK, NB_ALL_8PSK**

PN9 data is inserted into the normal burst encrypted bit area. The PN9 data in the slots is continuous.

- **TCH_FS**

Supports Speech channel at full rate (TCH/FS) specified in Section 3.1 of 3GPP TS 05.03

The table below shows channel coding parameters:

Type of Channel	Bits/Block Data + Parity + Tail1	Convolutional Code Rate	Coded Bits per Block	Interleaving Depth
TCH/FS class I	182+3+4	1/2	378	
class II	78+0+0	—	78	

- **CS-1_1 (4)_SLOT (_4SLOT)**

Supports packet data block type 1 (CS-4) and 4 (CS-1) specified in Section 5.1 of 3GPP TS 05.03

The table below shows channel coding parameters:

Scheme	Code Rate	USF	Pre-coded USF	Radio Block excl. USF and BCS	BCS	Tail	Coded Bits	Punctured Bits
CS-1	1/2	3	3	181	40	4	456	0
CS-4	1	3	12	428	16	—	456	—

- **DL (UL)_MCS-1 (5, 9)_1SLOT (_4SLOT)**

Supports packet data block types 5 (MCS-1), 9 (MCS-5), and 13 (MCS-9) specified in Section 5.1 of 3GPP TS 05.03

The table below shows channel coding parameters:

Scheme	Code Rate	Header Code Rate*	Modulation	RLC Blocks per Radio Block (20 ms)	Raw Data within One Radio Block	Family	BCS	Tail Payload	HCS	Data Rate kb/s
MCS-9	1.0	0.36	8PSK	2	2x592	A	2x12	2x6	8	59.2
MCS-5	0.37	1/3		1	448	B	12	6		22.4
MCS-1	0.53	0.53	GMSK	1	176	C	—	—		8.8

*: The Header data is all "0."

Selecting Waveform Pattern

Waveform Patterns	Uplink/Downlink	Data	Output Slot	Communications	File Size [MB]
GMSK_PN9	Uplink/Downlink	PN9* ¹	—	—	0.1
8PSK_PN9	Uplink/Downlink		—	—	0.4
GMSK_TN0	Uplink/Downlink	PN9* ²	TN0	—	3.7
8PSK_TN0	Uplink/Downlink		TN0	—	3.7
NB_GMSK	Uplink/Downlink	PN9* ³	TN0	—	3.7
NB_ALL_GMSK	Uplink/Downlink		All Slots	—	29.3
NB_8PSK	Uplink/Downlink		TN0	—	3.7
NB_ALL_8PSK	Uplink/Downlink		All Slots	—	29.3
TCH_FS	Uplink/Downlink	GSM	TN0	—	47.6
CS-1_1SLOT	Uplink/Downlink		TN0	—	190.1
CS-4_1SLOT	Uplink/Downlink		TN0	—	190.1
DL_MCS-1_1SLOT	Downlink	GPRS	TN0	—	190.1
UL_MCS-1_1SLOT	Uplink		TN0	—	190.1
DL_MCS-5_1SLOT	Downlink	PN9* ⁴	TN0	—	190.1
UL_MCS-5_1SLOT	Uplink		TN0	—	190.1
DL_MCS-9_1SLOT	Downlink		TN0	—	190.1
UL_MCS-9_1SLOT	Uplink		TN0	—	190.1
DL_MCS-9_4SLOT* ⁵	Downlink	EDGE	TN0, 1, 2, 3	—	760.3
UL_MCS-9_4SLOT* ⁵	Uplink		TN0, 1, 2, 3	—	760.3

*1: PN9 data is inserted into the entire area that does not have the slot format.

*2: PN9 data is inserted into the entire area of the slots, except the guard.

*3: PN9 data is inserted into the normal burst encrypted bit area.

*4: The bit string channel-coded for PN9 data is inserted into the normal burst encrypted bit area.

*5: To use this waveform pattern, ARB Memory Upgrade 256 Msample (option) or ARB Memory Upgrade 1024 Msample (option), is required.

* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.

Consider this when selecting the ARB memory upgrade option.

GSM/EDGE Waveform Patterns

Standard

Frame Configuration

Each frame is composed of eight slots. TCH/FS consist of 26 multiframe, and other channels consist of 52 multiframe.

Slot Configuration

GMSK_TN0 and 8PSK_TN0 consist of the data field and guard field only as shown in the figures below:

PN 148	G 8.25
-----------	-----------

Unit: bit

PN: Data PN9 pseudo random pattern (continuous between transmitted slots)
G: Guard bit FF_H

PN 444	G 24.75
-----------	------------

Unit: bit

PN: Data PN9 pseudo random pattern (continuous between transmitted slots)
G: Guard bit FF_H

The slot configuration for those other than GMSK_PN9, 8PSK_PN9, GMSK_TN0, and 8PSK_TN0 is normal burst as shown in the figure below:

Normal Burst (GMSK)

T 3	E 57	S 1	TSC 26	S 1	E 57	T 3	G 8.25
--------	---------	--------	-----------	--------	---------	--------	-----------

Unit: bit

T: Tail bit 0_H (4 bits)
E: Encrypted bit Channel-coded* PN9 pseudo random pattern (continuous between transmitted slots)
S: Stealing bit Steal flag
TSC: Training sequence bit $097\ 0897_H$
T: Tail bit 0_H (4 bits)
G: Guard bit FF_H

Normal Burst (8PSK)

T1 9	E 174	TSC 78	E 174	T2 9	G 24.75
---------	----------	-----------	----------	---------	------------

Unit: bit

T1: Tail bit $1FF_H$ (9 bits)
E: Encrypted bit Channel-coded* PN9 pseudo random pattern (continuous between transmitted slots)
TSC: Training sequence bit $3F3F\ 9E29\ FFF3\ FF3F\ 9E49_H$
T2: Tail bit $1FF_H$ (9 bits)
G: Guard bit FF_H

*: When the waveform pattern is NB, PN9 data that has not been channel-coded is inserted directly.

PHS Waveform Patterns

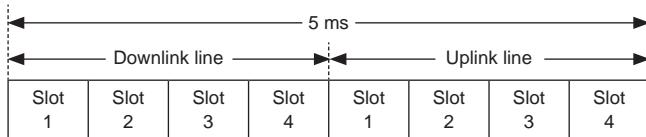
Standard

PHS Waveform Patterns

The PHS waveform patterns listed in the table below are stored on the MG3710A internal hard disk.

The RCR STD-28-specified signals for testing CS (base station) and PS (mobile station) receivers are output by selecting one of these PHS waveform patterns without setting any complex RCR STD-28 parameters.

When a signal with different parameters is required, the optional MX370102A TDMA IQproducer can be used to set parameters and generate waveforms.

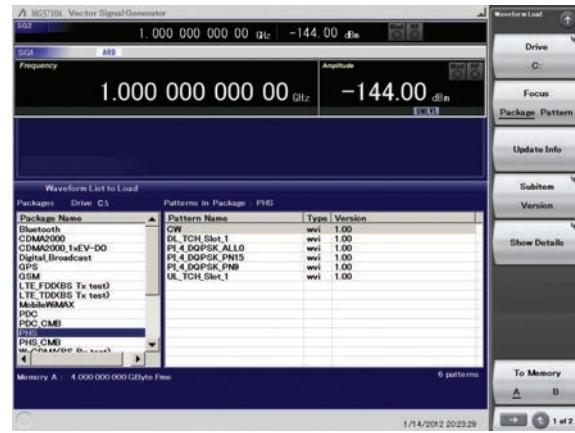

Waveform Patterns	Uplink/Downlink	Scramble	Output Slot	File Size [MB]
PI_4_DQPSK_PN9	—	OFF	No frame	0.2
PI_4_DQPSK_PN15	—	OFF	No frame	8.0
PI_4_DQPSK_ALL0	—	OFF	No frame	0.1
DL_TCH_Slot_1	Downlink	OFF	Slot 1: TCH Slot 2 to 4: off	1.8
UL_TCH_Slot_1	Uplink	OFF	Slot 1: TCH Slot 2 to 4: off	9.3
CW	—	—	—	0.1

* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.

Consider this when selecting the ARB memory upgrade option

Frame Configuration

Each PHS frame is composed of four uplink slots and four downlink slots (eight slots in total), and data is generated cyclically based on one PHS frame. Only Slot 1 is transmitted, and subsequent Slots 2 through 4 are not transmitted (transmission off). A PN9 pseudo random pattern in the TCH field of each slot is independent within the slot has continuity between frames.



PHS Frame Configuration

In a waveform pattern other than PI_4_DQPSK_PN9, PI_4_DQPSK_PN15 and PI_4_DQPSK_ALL0, a communication channel is allocated to uplink or downlink Slot 1. Other slots are burst off output.

PHS Frame Configuration

Selecting Waveform Pattern

Slot Configuration

There are two types of slot configurations: downlink traffic channel and uplink traffic channel. The scramble function is always Off.

Uplink/Downlink Traffic Channel

R	SS	PR	UW	CI	SA	TCH	CRC	G
4	2	6	16	4	16	160	16	16

R: Ramp time for transient response 0_H (4 bits)
 SS: Start symbol 2_H (2 bits)
 PR: Preamble 19_H (6 bits)
 UW: Sync word Uplink = $E149_H$ (16 bits)
 Downlink = $3D4C_H$ (16 bits)
 CI: Channel identification 0_H (4 bits)
 SA: SACCH 8000 $_H$ (16 bits)
 TCH: Information channel PN9 pseudo random pattern independent in each slot (PN pattern is continuous in TCH of a slot).
 CRC: Cyclic redundancy check code CRC bits for CI, SA, TCH
 G: Guard time for transient response 0000 $_H$ (16 bits)

PDC Waveform Patterns

Standard

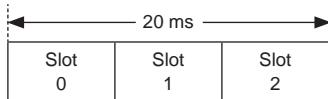
PDC Waveform Patterns

Waveform patterns for the Wanted Signals and Interference Signals required to execute the RCR STD-27-specified transmission and reception tests are stored on the MG3710A internal hard disk, and can be output without requiring options (but check the parameters below).

Waveform patterns to output uplink/downlink Slot 0 data only and unframed waveform pattern for interference signals are provided for full rate and half rate.

When a signal with different parameters is required, the optional MX370102A TDMA IQproducer can be used to set parameters and generate waveforms.

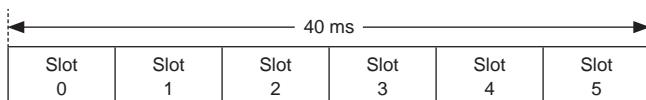
Waveform Patterns	Uplink/ Downlink	Half Rate/ Full Rate	Output Slot	Evaluation	File Size [MB]
PI_4_DQPSK_PN9	—	—	No frame	Tx Device Test	0.2
PI_4_DQPSK_PN15	—	—	No frame	Interfering Signal	8.0
DL_Full_Rate_Slot0	Downlink	Full rate	Slot 0 only	Wanted Signal	6.6
DL_Half_Rate_Slot0	Downlink	Half rate	Slot 0 only	for Receiver	13.1
UL_Full_Rate_Slot0	Uplink	Full rate	Slot 0 only	Test	2.2
UL_Half_Rate_Slot0	Uplink	Half rate	Slot 0 only		2.2
CW	—	—	—	Interfering Signal	0.1


* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.

Consider this when selecting the ARB memory upgrade option

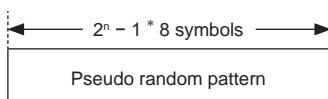
Frame Configuration

• At Full Rate


The PDC system consists of TDMA frames that are composed of three slots, and data is generated cyclically based on one TDMA frame. A PN9 pseudo random pattern in each slot is independent within the slot and has continuity. In downlink, all 1 data are output for the bit sequence in Slots 1 and 2. In uplink, Slots 1 and 2 are burst off.

Frame Configuration at Full Rate

• At Half Rate


The PDC system consists of TDMA frames that are composed of six slots, and data is generated cyclically based on one TDMA frame. A PN9 pseudo random pattern in each slot is independent within the slot and has continuity. In downlink, all 1 data are output for the bit sequence in Slots 1 through 5. In uplink, Slots 1 through 5 are burst off.


Frame Configuration at Half Rate

• Unframed Waveform Pattern

For interference signals, unframed pseudo random patterns are output for which /4 DQPSK modulation was performed. At this time, the positions of the first and last symbol points of the arbitrary waveform pattern are changed to adjust the data length, so as to retain the continuity of the pseudo random pattern.

Unframed Waveform Pattern Configuration

Selecting Waveform Pattern

Slot Configuration

There are four types of slot configurations according to the communication channels (Uplink/Downlink).

Uplink Communication Channel (UP TCH)

R	P	TCH	SW	CC	SF	SACCH	TCH	G
4	2	112	20	8	1	15	112	6

R: Guard time for burst transient response 0_H (4 bits)
 P: Preamble 2_H (2 bits)
 TCH: For user information transfer PN pseudo random pattern independent in each slot (PN pattern is continuous in TCH of a slot).
 SW: Sync word Slot 0 = 785B4_H (20 bits)
 Slot 1 = 62DC9_H (20 bits)
 Slot 2 = 7E28A_H (20 bits)
 CC: Color code 00_H (8 bits)
 SF: Steal flag 0_H (1 bit)
 SACCH: Low-speed associated control channel 0000_H (15 bits)
 G: Guard time for burst transient response 0_H (6 bits)
 Scramble function (TCH, SF, SACCH): Off

Downlink Communication Channel (DOWN TCH)

R	P	TCH	SW	CC	SF	SACCH	TCH
4	2	112	20	8	1	21	112

R: Guard time for burst transient response 0_H (4 bits)
 P: Preamble 2_H (2 bits)
 TCH: For user information transfer PN pseudo random pattern independent in each slot (PN pattern is continuous in TCH of a slot).
 SW: Sync word Slot 0 = 87A4B_H (20 bits)
 Slot 1 = 9D236_H (20 bits)
 Slot 2 = 81D75_H (20 bits)
 CC: Color code 00_H (8 bits)
 SF: Steal flag 0_H (1 bit)
 SACCH: Low-speed associated control channel 000000_H (21 bits)
 Scramble function (TCH, SF, SACCH): Off

PDC Packet Waveform Patterns

Standard

PDC Packet Waveform Patterns

The four waveform patterns listed in the table below are stored on the MG3710A internal hard disk.

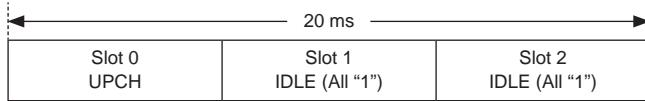
The RCR STD-27-specified signals for testing base station and mobile station receivers for UPCH communications can be output by selecting one of these waveform patterns without setting any complex RCR STD-27 parameters.

In addition, the Downlink3 data rate UPCH pattern and Uplink1 UPCH pattern can be switched.

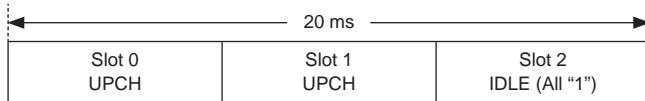
When a signal with different parameters is required, the optional MX370102A TDMA IQproducer can be used to set parameters and generate waveforms.

Waveform Patterns	Uplink/Downlink	Output Slot	File Size [MB]
DL_Packet_Slot_0	Downlink	Slot 0=UPCH Slot 1=IDLE (all "1") Slot 2=IDLE (all "1")	6.6
DL_Packet_Slot_01	Downlink	Slot 0=UPCH Slot 1=UPCH Slot 2=IDLE (all "1")	6.6
DL_Packet_Slot_all	Downlink	Slot 0=UPCH Slot 1=UPCH Slot 2=UPCH	6.6
UL_Packet_Slot_0	Uplink	Slot 0=UPCH Slot 1=Transmit off Slot 2=Transmit off	2.1

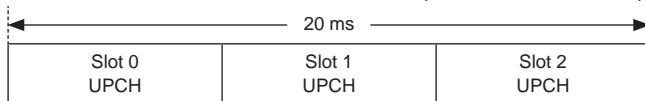
* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.

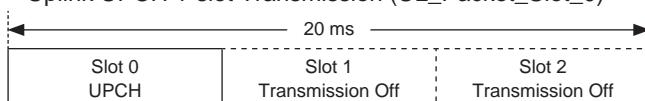

Consider this when selecting the ARB memory upgrade option

Frame Configuration


There are four types of TDMA frame configurations for PDC Packet waveform patterns: downlink 1-slot transmission, downlink 2-slot transmission, downlink 3-slot transmission, and uplink 1-slot transmission. Each TDMA frame is composed of three slots, and data is generated cyclically based on one TDMA frame.

A PN9 pseudo random pattern in the CAC field of each slot has continuity. In downlink UPCH 2-slot transmission, for example, the end of the CAC field in Slot 0 and the start of the CAC field in Slot 1 are continuing. Also, the end of the CAC field in Slot 1 and the start of the CAC field in Slot 0 of the next frame are continuing in this case.


- Downlink UPCH 1-slot Transmission (DL_Packet_Slot_0)


- Downlink UPCH 2-slot Transmission (DL_Packet_Slot_01)

- Downlink UPCH 3-slot Transmission (DL_Packet_Slot_all)

- Uplink UPCH 1-slot Transmission (UL_Packet_Slot_0)

Selecting Waveform Pattern

Slot Configuration

There are two types of slot configurations: downlink user packet channel and uplink user packet channel. The scramble function is always Off.

Downlink User Packet Channel (DOWN UPCH)

R	P	CAC	SW	CC	CAC	E
4	2	112	20	8	112	22

R: Guard time for burst transient response 0_H (4 bits)

2_H (2 bits)

P: Preamble
CAC: Control signals (UPCH)

SW: Sync word

PN9 pseudo random pattern (continuous between transmitted slots)

Slot 0 = $87A4B_H$ (20 bits)

Slot 1 = $9D236_H$ (20 bits)

Slot 2 = $81D75_H$ (20 bits)

00_H (8 bits)

$3FFFFFF_H$ (22 bits)

CC: Color code

E: Collision control bits

Uplink User Packet Channel (UP UPCH)

R	P	CAC	SW	CC	CAC	G
4	2	112	20	8	116	18

R: Guard time for burst transient response 0_H (4 bits)

2_H (2 bits)

P: Preamble
CAC: Control signals (UPCH)

SW: Sync word

PN9 pseudo random pattern (continuous between transmitted slots)

Slot 0 = $785B4_H$ (20 bits)

00_H (8 bits)

00000_H (18 bits)

CC: Color code

E: Collision control bits

Digital Broadcast Waveform Patterns

Standard

Digital Broadcast Waveform Patterns

The BS/CS/CATV/ISDB-T waveform patterns listed in the table below are stored on the MG3710A internal hard disk and signals for testing devices are output by selecting one of these waveform patterns.

There is also a pattern for evaluating ISDB-T video and audio as well as for simple BER measurements.

Waveform Patterns	Outline	Parameter	File Size [MB]
BS_1ch	Physical layer waveform pattern of digital BS broadcast For device evaluation	1 channel PN23fix ^{*1} Modulation only	Roll-off factor: 0.35 Nyquist Bandwidth: 28.86 MHz Modulation: QPSK
CS_1ch	Physical layer waveform pattern of digital CS broadcast For device evaluation		Roll-off factor: 0.35 Nyquist Bandwidth: 21.096 MHz Modulation: QPSK
CATV_AnnexC_1ch	Physical layer waveform pattern for CATV (ITU-T J83 Annex C) For device evaluation		Roll-off factor: 0.13 Nyquist Bandwidth: 5.274 MHz Modulation: 64QAM
ISDBT_1layer_1ch	Physical layer waveform pattern for ISDB-T For device evaluation	1 channel PN23fix ^{*1} Pilot Signal With TMCC	Mode: 3, GI: 1/8 A-Layer: 13seg, 64QAM
ISDBT_2layer_1ch			Mode: 3, GI: 1/8 A-Layer: 1seg, QPSK B-Layer: 12seg, 64QAM
ISDBT_2layer_Movie ^{*2}	Waveform pattern for ISDB-T partial reception ^{*3} For evaluating video and audio data of terminals 40-frame waveform length	1 channel For video and audio	Mode: 3, GI: 1/8 A-Layer: 1seg, QPSK, CR=2/3, TI=2 B-Layer: 12seg, 64QAM, CR=7/8, TI=2
ISDBT_2layer_Movie2 ^{*2}			Mode: 3, GI: 1/8 A-Layer: 1seg, QPSK, CR=2/3, TI=4 B-Layer: 12seg, 64QAM, CR=3/4, TI=2
ISDBT_2layer_Coded	Waveform pattern for ISDB-T partial reception ^{*3} For simple BER measurement. 4-frame waveform length	1 channel For simple BER	Mode: 3, GI: 1/8 A-Layer: 1seg, QPSK, CR=2/3, TI=2 B-Layer: 12seg, 64QAM, CR=7/8, TI=2
ISDBT_QPSK_1_2			Mode: 3, GI: 1/8 A-Layer: 1seg, QPSK, CR=1/2, TI=0 B-Layer: 12seg, 64QAM, CR=7/8, TI=1
ISDBT_QPSK_2_3			Mode: 3, GI: 1/8 A-Layer: 1seg, QPSK, CR=2/3, TI=0 B-Layer: 12seg, 64QAM, CR=7/8, TI=1
ISDBT_16QAM_1_2			Mode: 3, GI: 1/8 A-Layer: 1seg, 16QAM, CR=1/2, TI=0 B-Layer: 12seg, 64QAM, CR=7/8, TI=1
ISDBT_QPSK_2_3_TI4			Mode: 3, GI: 1/8 A-Layer: 1seg, QPSK, CR=2/3, TI=4 B-Layer: 12seg, 64QAM, CR=3/4, TI=2
ISDBTsb_Movie ^{*4}	Waveform pattern for ISDB-Tsb partial reception ^{*3} For evaluation video and audio data of terminals. 68-frame waveform length	1 channel For video and audio	Mode: 3, GI: 1/8 A/B-Layer: QPSK, CR=1/2, TI=4 Seg#1 to #5: 8-segment concatenation transmission in 1-segment format Seg#6 to #8: 8-segment concatenation transmission in 3-segment format
ISDBTsb_QPSK_1_2	Waveform pattern for ISDB-Tsb partial reception ^{*3} For simple BER measurement. 4-frame waveform length	1 channel For simple BER	Mode: 3, GI: 1/8 A/B-Layer: QPSK, CR=1/2, TI=0 Seg#1 to #5: 8-segment concatenation transmission in 1-segment format Seg#6 to #8: 8-segment concatenation transmission in 3-segment format
ISDBTsb_QPSK_2_3			Mode: 3, GI: 1/8 A/B-Layer: QPSK, CR=2/3, TI=0 Seg#1 to #5: 8-segment concatenation transmission in 1-segment format Seg#6 to #8: 8-segment concatenation transmission in 3-segment format
ISDBTsb_16QAM_1_2			Mode: 3, GI: 1/8 A/B-Layer: 16QAM, CR=1/2, TI=0 Seg#1 to #5: 8-segment concatenation transmission in 1-segment format Seg#6 to #8: 8-segment concatenation transmission in 3-segment format

*1: The PN sequence is discontinuous at the waveform pattern connection.

This cannot be used to measure BER (PN23) although it can be used for simple BER measurement.

*2: To use this waveform pattern, ARB Memory Upgrade 256 Msample (option) or ARB Memory Upgrade 1024 Msample (option), is required.

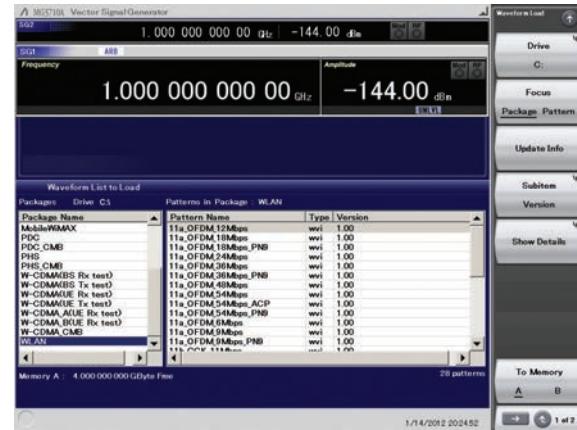
*3: It is not guaranteed that any receiver can receive a waveform with this length.

*4: To use this waveform pattern, Combination of Baseband Signal (option), ARB Memory Upgrade 256 Msample (option), or ARB Memory Upgrade 1024 Msample (option), is required.

* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.

Consider this when selecting the ARB memory upgrade option

WLAN Waveform Patterns


Standard

WLAN Waveform Patterns

The WLAN (IEEE802.11a/b/g) waveform patterns listed in the table below are stored on the MG3710A internal hard disk.

Signals for testing the receiver and transmitter of a terminal or module can be output by selecting one of these patterns.

The waveform patterns shown below are the signals for one packet. When a waveform pattern is selected, the signal is output in an endless loop. To stop the signal at a fixed number of packets, use the IQproducer Combination File Edit function to generate the sequence file first and select it using the MG3710A.

Selecting Waveform Pattern

IEEE_802.11a/802.11g (ERP-OFDM) Waveform Patterns List

Waveform Patterns	Data Rate (Mbps)	Modulation	Coding Rate	Coding Bits per Sub-carrier	Coding Bits per OFDM Symbol	Data Bits per OFDM Symbol	File Size [MB]
11a_OFDM_6Mbps	6	BPSK	1/2	1	48	24	0.3
11a_OFDM_9Mbps	9	BPSK	3/4	1	48	36	0.2
11a_OFDM_9Mbps_PN9*1	9	BPSK	3/4	1	48	36	71.5
11a_OFDM_12Mbps	12	QPSK	1/2	2	96	48	0.2
11a_OFDM_18Mbps	18	QPSK	3/4	2	96	72	0.1
11a_OFDM_18Mbps_PN9*1	18	QPSK	3/4	2	96	72	36.6
11a_OFDM_24Mbps	24	16QAM	1/2	4	192	96	0.1
11a_OFDM_36Mbps	36	16QAM	3/4	4	192	144	0.1
11a_OFDM_36Mbps_PN9*1	36	16QAM	3/4	4	192	144	19.1
11a_OFDM_48Mbps	48	64QAM	2/3	6	288	192	0.1
11a_OFDM_54Mbps	54	64QAM	3/4	6	288	216	0.1
11a_OFDM_54Mbps_PN9*1	54	64QAM	3/4	6	288	216	13.5
11a_OFDM_54Mbps_ACP*2	54	64QAM	3/4	6	288	216	0.1

*1: Waveform pattern having continuous PN9 data. For the waveform patterns without *1 affixed, the PN9 data does not have continuity. A gap period of 4 samples is secured at the start of the waveform pattern, followed by a PLCP preamble. When using an external trigger, set the trigger delay to -4 samples to match the rising of the external trigger and the starting point of the PLCP preamble.

*2: Improved ACPR

IEEE_802.11b Waveform Patterns List

Waveform Patterns	Spreading, Coding	Modulation	File Size [MB]
11b_DSSS_1Mbps	DSSS, 11 chip Barker Code	DBPSK	1.6
11b_DSSS_2Mbps	DSSS, 11 chip Barker Code	DQPSK	0.9
11b_DSSS_2Mbps_PN9*1,*2	DSSS, 11 chip Barker Code	DQPSK	368.2
11b_CCK_5_5Mbps	CCK	DQPSK	0.4
11b_CCK_11Mbps	CCK	DQPSK	0.3
11b_CCK_11Mbps_PN9*1	CCK	DQPSK	80.7
11b_CCK_11Mbps_ACP*3	CCK	DQPSK	0.3

*1: Waveform pattern having continuous PN9 data. For the waveform patterns without *1 affixed, the PN9 data does not have continuity.

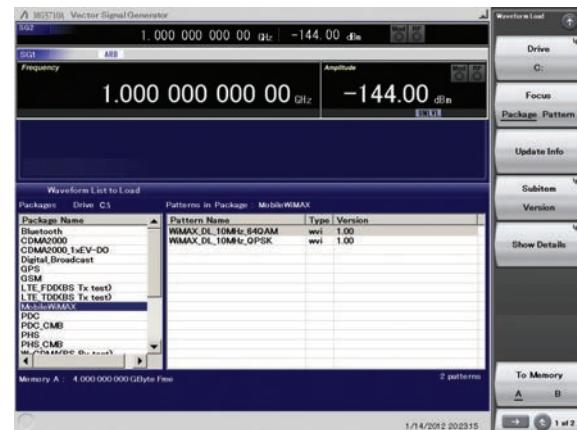
*2: To use this waveform pattern, Combination of Baseband Signal (option), ARB Memory Upgrade 256 Msample (option), or ARB Memory Upgrade 1024 Msample (option), is required.

*3: Waveform pattern having improved ACPR with spectrum sidelobes cut down.

IEEE_802.11g (DSSS-OFDM) Waveform Patterns List

Waveform Patterns	Data Rate (Mbps)	Modulation	Coding Rate	Coding Bits per Sub-carrier	Coding Bits per OFDM Symbol	Data Bits per OFDM Symbol	File Size [MB]
11g_DSSS_OFDM_6Mbps	6	BPSK	1/2	1	48	24	0.4
11g_DSSS_OFDM_9Mbps	9	BPSK	3/4	1	48	36	0.3
11g_DSSS_OFDM_12Mbps	12	QPSK	1/2	2	96	48	0.3
11g_DSSS_OFDM_18Mbps	18	QPSK	3/4	2	96	72	0.2
11g_DSSS_OFDM_24Mbps	24	16QAM	1/2	4	192	96	0.2
11g_DSSS_OFDM_36Mbps	36	16QAM	3/4	4	192	144	0.2
11g_DSSS_OFDM_48Mbps	48	64QAM	2/3	6	288	192	0.2
11g_DSSS_OFDM_54Mbps	54	64QAM	3/4	6	288	216	0.2

* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.


Consider this when selecting the ARB memory upgrade option

Mobile WiMAX Waveform Patterns

Standard

Mobile WiMAX Waveform Patterns

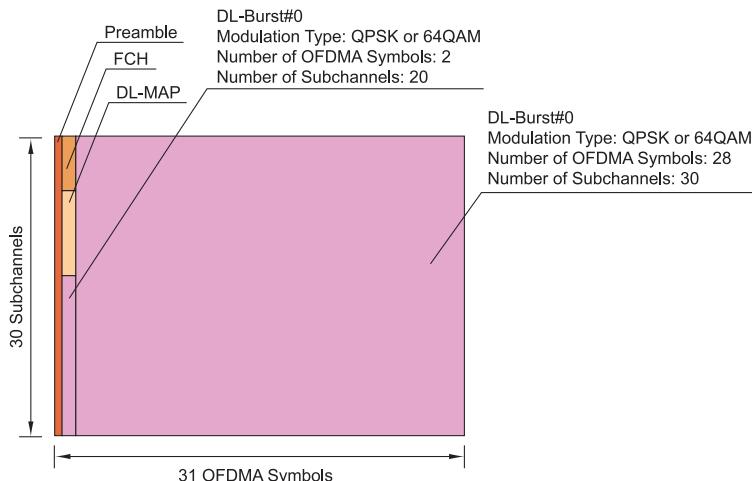
The Mobile WiMAX patterns listed in the table below are stored on the MG3710A internal hard disk. Signals for evaluating devices and interference signals are output simply by selecting a pre-saved standard waveform pattern. If another signal is required, use MX370105A Mobile WiMAX IQproducer to create and save the custom waveform pattern.

Selecting Waveform Pattern

• Mobile WiMAX Waveform Patterns List

Waveform Patterns	Evaluation	Outline	File Size [MB]
WiMAX_DL_10MHz_QPSK	BS Tx Device Test	Includes Preamble, FCH, and DL-MAP Modulation method is QPSK DL-Burst mapped waveform pattern	0.5
WiMAX_DL_10MHz_64QAM		Includes Preamble, FCH, and DL-MAP Modulation method is 64QAM BL-Burst mapped waveform pattern	0.5

* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.


Consider this when selecting the ARB memory upgrade option

• Parameter

The parameters for this waveform pattern are listed in the following table. The channel-coded data corresponding to the PN9Fix data is mapped at DL-Burst.

Parameter	WiMAX_DL_10MHz_QPSK	WiMAX_DL_10MHz_64QAM
Bandwidth		Settings
Fame Duration		10 MHz
Preamble Index		5 ms
Number of OFDMA Symbols	31 symbols (Including Preamble)	
FCH		0
DL-MAP		Yes
DL-Burst FEC Type		Yes
DL-Burst Modulation Type	QPSK	CTC (1/2)
		64QAM

• Frame Composition

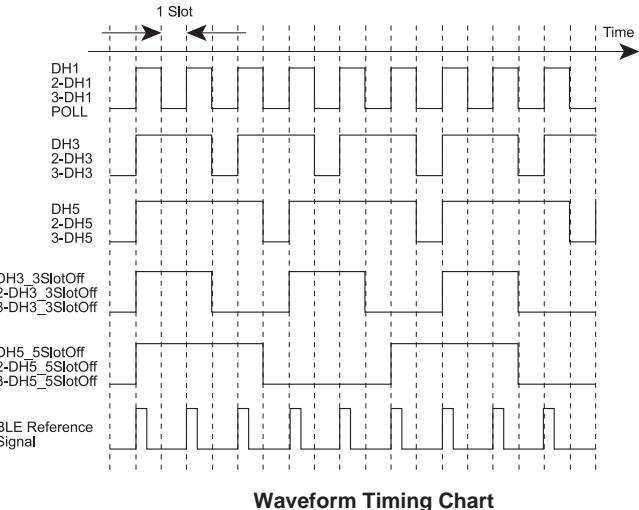
Bluetooth Waveform Patterns

Standard

Bluetooth Waveform Patterns

The Bluetooth waveform patterns listed in the table below are stored on the MG3710A internal hard disk. Selecting one of these waveform patterns outputs the best signal for the evaluation.

- **POLL**


This is used for operation checks and PER measurement of mobile terminals with *Bluetooth*.

- **No Packet Format (PN9, PN15)**

This is used for BER measurement of mobile terminals and modules with *Bluetooth*.

- **DH1, DH3, DH5**

This is used in combination with an external demodulator for loop-back tests (no FEC) of mobile terminals and modules with *Bluetooth*.

Waveform Timing Chart

Waveform Pattern Name	Data Rate (Mbit/s)	Modulation for Payload	Filter	Packet Type	Dirty, FM	File Size [MB]
DH1*1	1	GFSK*4	Gaussian*5	DH1	—	0.1
DH3*1	1	GFSK*4	Gaussian*5	DH3	—	0.2
DH5*1	1	GFSK*4	Gaussian*5	DH5	—	0.3
DH3_3SlotOff*1	1	GFSK*4	Gaussian*5	DH3	—	0.2
DH5_5SlotOff*1	1	GFSK*4	Gaussian*5	DH5	—	0.3
POLL	1	GFSK*4	Gaussian*5	POLL	—	0.1
2-DH1*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH1	—	0.1
2-DH3*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH3	—	0.2
2-DH5*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH5	—	0.3
2-DH3_3SlotOff*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH3	—	0.2
2-DH5_5SlotOff*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH5	—	0.3
3-DH1*1	3	8-DPSK	Root Nyquist*6	3-DH1	—	0.1
3-DH3*1	3	8-DPSK	Root Nyquist*6	3-DH3	—	0.2
3-DH5*1	3	8-DPSK	Root Nyquist*6	3-DH5	—	0.3
3-DH3_3SlotOff*1	3	8-DPSK	Root Nyquist*6	3-DH3	—	0.2
3-DH5_5SlotOff*1	3	8-DPSK	Root Nyquist*6	3-DH5	—	0.3
GFSK-PN9*2	1	GFSK*4	Gaussian*5	No Packet Format	—	0.6
GFSK-PN15*3	1	GFSK*4	Gaussian*5	No Packet Format	—	37.5
PI_4_DQPSK-PN9*2	2	$\pi/4$ -DQPSK	Root Nyquist*6	No Packet Format	—	0.1
PI_4_DQPSK-PN15*3	2	$\pi/4$ -DQPSK	Root Nyquist*6	No Packet Format	—	6.0
8DPSK-PN9*2	3	8-DPSK	Root Nyquist*6	No Packet Format	—	0.2
8DPSK-PN15*3	3	8-DPSK	Root Nyquist*6	No Packet Format	—	12.0
DH1_dirty*1	1	GFSK*4	Gaussian*5	DH1	Dirty	9.2
DH3_dirty*1	1	GFSK*4	Gaussian*5	DH3	Dirty	9.2
DH5_dirty*1	1	GFSK*4	Gaussian*5	DH5	Dirty	9.2
2-DH1_dirty*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH1	Dirty	3.5
2-DH3_dirty*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH3	Dirty	10.3
2-DH5_dirty*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH5	Dirty	17.2
3-DH1_dirty*1	3	8-DPSK	Root Nyquist*6	3-DH1	Dirty	3.5
3-DH3_dirty*1	3	8-DPSK	Root Nyquist*6	3-DH3	Dirty	10.3
3-DH5_dirty*1	3	8-DPSK	Root Nyquist*6	3-DH5	Dirty	17.2
DH1_Dirty_withFM*1	1	GFSK*4	Gaussian*5	DH1	Dirty, FM	9.2
DH3_Dirty_withFM*1	1	GFSK*4	Gaussian*5	DH3	Dirty, FM	9.2
DH5_Dirty_withFM*1	1	GFSK*4	Gaussian*5	DH5	Dirty, FM	9.2
2-DH1_Dirty_withFM*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH1	Dirty, FM	3.5
2-DH3_Dirty_withFM*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH3	Dirty, FM	10.3
2-DH5_Dirty_withFM*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH5	Dirty, FM	17.2
3-DH1_Dirty_withFM*1	3	8-DPSK	Root Nyquist*6	3-DH1	Dirty, FM	3.5
3-DH3_Dirty_withFM*1	3	8-DPSK	Root Nyquist*6	3-DH3	Dirty, FM	10.3
3-DH5_Dirty_withFM*1	3	8-DPSK	Root Nyquist*6	3-DH5	Dirty, FM	17.2
BLE*1	1	GFSK*8	Gaussian*5	BLE Reference Signal	—	0.1
BLE_Dirty*1	1	GFSK*8	Gaussian*5	BLE Reference Signal	Dirty	28.7
BLE_Dirty_withFM*1	1	GFSK*8	Gaussian*5	BLE Reference Signal	Dirty, FM	28.7
BLE_CRC_corrupted*1, *7	1	GFSK*8	Gaussian*5	BLE Reference Signal	—	0.2
GFSK-PN15_BLE*3	1	GFSK*8	Gaussian*5	No Packet Format	—	6.0

*1: PN9 data is inserted into the payload body.

*2: PN9 data is inserted into all areas that do not have a packet format.

*3: PN15 data is inserted into all areas that do not have a packet format.

*4: Modulation index=0.32

*5: Bandwidth time (BT)=0.5

*6: Roll-off rate β =0.4

*7: Use in RF-PHY.TS/4.0.0 RCV-LE/CA/07/C (PER Report Integrity) with intentional CRC errors in every other packet is assumed.

*8: Modulation index = 0.5

* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.

Consider this when selecting the ARB memory upgrade option

GPS Waveform Patterns

Standard

GPS Waveform Patterns

The four GPS waveform patterns listed below are stored on the MG3710A internal hard disk.

Selecting one of these waveform patterns outputs the best signal for the evaluation.

- **SYNC_ADJ**

This is used for synchronization adjustment of mobile terminals with GPS.

- **TLM, TLM_PARITY**

This is used for receiver sensitivity measurement and operation checks of mobile terminals with GPS.

- **PARITY**

This is used for detecting the parity of mobile terminals with GPS.

- **PN9**

This is used for BER measurement during device evaluation.

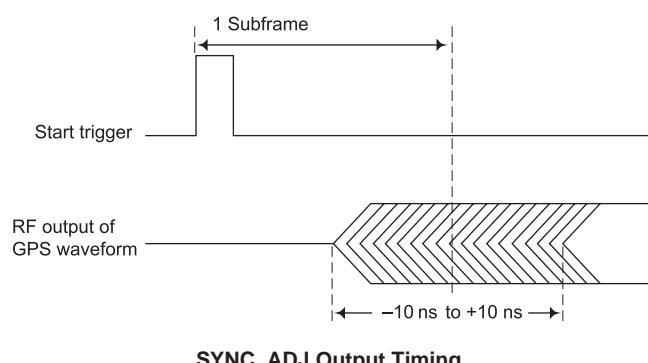
Selecting Waveform Pattern

Waveform Patterns	Main Usage	Outline of Data	File Size [MB]
SYNC_ADJ*1	Synchronization adjustment*2	Consists of TLM, HOW, and default navigation data, formatted according to subframe configuration prescribed in GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION One period is configured with 1 subframes.	—
DATA0	Synchronization adjustment	Used in combination with SYNC_ADJ. These waveform patterns are automatically loaded into the memory when SYNC_ADJ is loaded into the memory.	7.9
DATA1		Users do not have to perform loading and selecting of these waveform patterns, because these waveform patterns are automatically selected when SYNC_ADJ is selected.	7.9
DATA10			15.7
DATA1c			7.9
TLM*3	Sensitivity test	Consists of TLM, HOW, and default navigation data, formatted according to subframe configuration prescribed in GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION	93.7
PN9	BER measurement	Consecutive PN9 data not configured in subframe format	159.6
PARITY	Parity detection	Configured in Word format prescribed in GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION One Word consists of 24-bit PN9 fix data and 6-bit parity bit data.	93.7
TLM_PARITY*4	Sensitivity test	Consists of TLM, HOW, and Nav Data, formatted according to subframe configuration prescribed in GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION. Random data is inserted into the Nav Data part of Word3 to Word10. One period is configured with 5 subframes.	468.3

*1: Use SYNC_ADJ in combination with DATA0, DATA1, DATA10, and DATA1c. When selecting a file, press the Baseband key on the MG3710A to set Pattern Combination to Defined. Refer to the MG3710A Vector Signal Generator Operation Manual (main frame) for details about how to make the settings.

*2: The repeatability of the subframe output timing of the RF output versus external start trigger input is reduced to 10 ns max.

*3: When executing a Doppler test, change the RF frequency and sampling clock at the same rate.


The sampling clock when the Doppler frequency is 0 Hz is 4.092 MHz. For example, when applying a + 4 kHz Doppler frequency, the following expression establishes (providing the sampling clock as "CLK"): $(1575.42 \text{ MHz} + 4 \text{ kHz})/1575.42 \text{ MHz} = \text{CLK}/4.092 \text{ MHz}$ then: $\text{CLK} = 4.09201039 \text{ MHz}$.

Refer to the MG3710A Operation Manual (Mainframe) for RF frequency and sampling clock settings.

*4: To use this waveform pattern, Combination of Baseband Signal (option), ARB Memory Upgrade 256 Msample (option), or ARB Memory Upgrade 1024 Msample (option), is required.

* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.

Consider this when selecting the ARB memory upgrade option

Tone Signal Waveform Pattern

Standard

Tone Signal Waveform Pattern

The following table lists the waveform patterns and combination file that are available as tone signal waveform pattern.

Selecting Waveform Pattern

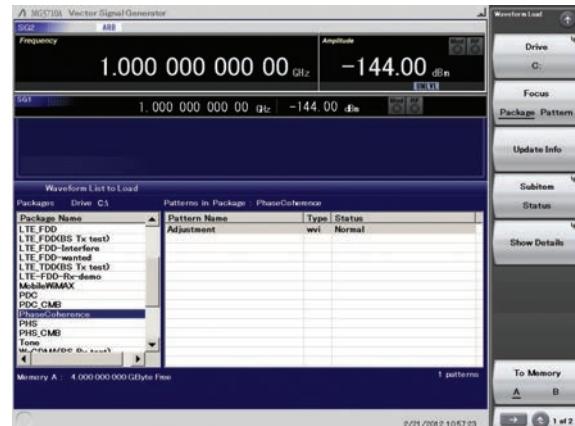
• Tone Signal Waveform Pattern

Waveform Pattern Name	Main Use	Data Summary	File Size [MB]
Package name: Tone			
+1MHz_Tone		Tone signal with +1 MHz frequency offset	0.1
-1MHz_Tone	Device Test	Tone signal with -1 MHz frequency offset	0.1
DC_Tone		Tone signal without any frequency offset	0.1

* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.
Consider this when selecting the ARB memory upgrade option

• Tone Signal Combination File

Waveform Pattern Name	Main Use	Data Summary	File Size [MB]
Package name: Tone			
2Tones_+1MHz_-1MHz	Device Test	Signal that combines tone signal with +1 MHz frequency offset and tone signal with -1 MHz frequency offset.	


To use this combination file, Combination of Baseband Signal (option) is required.

Waveform Pattern for Phase Adjustment

Standard

Waveform Pattern for Phase Adjustment

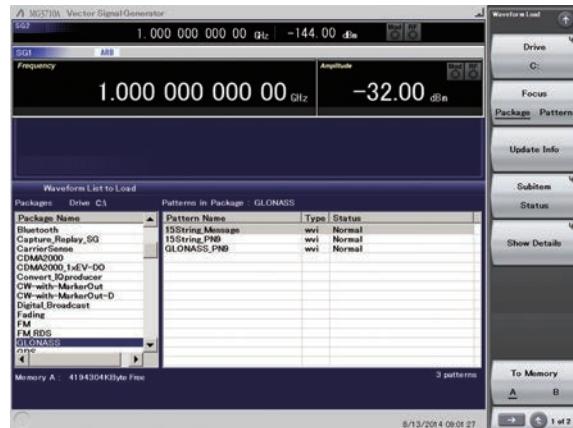
The following table lists the waveform patterns that are available for MG3710A's phase adjustment.

Selecting Waveform Pattern

- Waveform Pattern for Phase Adjustment

Waveform Pattern Name	Main Use	Data Summary	File Size [MB]
Package name: PhaseCoherence			
Adjustment	For phase adjustment of MG3710A	This is used to adjust phase and timing when outputting MIMO signal from MG3710A.	0.1

* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.


Consider this when selecting the ARB memory upgrade option

GLONASS Waveform Patterns

Standard

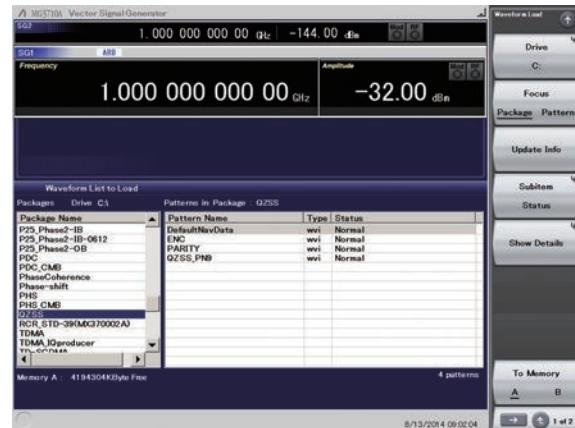
GLONASS Waveform Patterns

The GLONASS waveform patterns listed in the table below are stored on the MG3710A internal hard disk. Selecting one of these waveform patterns outputs the modulation signal for the GLONASS receiver Rx test.

Selecting Waveform Pattern

• GLONASS Waveform Patterns

Waveform Pattern Name	Main Use	Data Summary	File Size [MB]
15String_Message	Sensitivity test	Consists of String Structure prescribed in Global Navigation Satellite System (GLONASS) Interface Control Document.	122
15String_PN9	Check bit detection		
GLONASS_PN9	BER measurement	Consecutive PN9 data not configured in String and Frame format.	20


QZSS Waveform Patterns

Standard

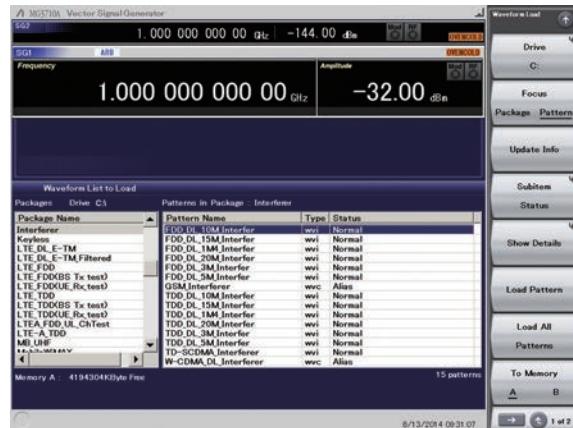
QZSS Waveform Patterns

The QZSS waveform patterns listed in the table below are stored on the MG3710A internal hard disk.

Selecting one of these waveform patterns outputs the modulation signal for the QZSS receiver Rx test.

Selecting Waveform Pattern

• QZSS Waveform Patterns


Waveform Pattern Name	Main Use	Data Summary	File Size [MB]
DefaultNavData	Sensitivity test	Consists of TLM, HOW, and default navigation data, formatted according to subframe configuration prescribed in Global Positioning System (GPS) Standard Positioning Service (SPS) Signal Specification.	98
ENC	Parity detection	Configured in word format prescribed in Global Positioning System Standard Positioning Service Signal Specification. One word consists of 24-bit PN9fix data and 6-bit parity bit data.	491
PARITY		Configured in word format prescribed in Global Positioning System Standard Positioning Service Signal Specification. One word consists of 24-bit random data and 6-bit parity bit data.	98
QZSS_PN9	BER measurement	Consecutive PN9 data not configured in subframe format	167

Interference Waveform Patterns

Standard

Interference Waveform Patterns

The following Rx test interference waveform patterns are stored on the MG3710A internal hard disk.

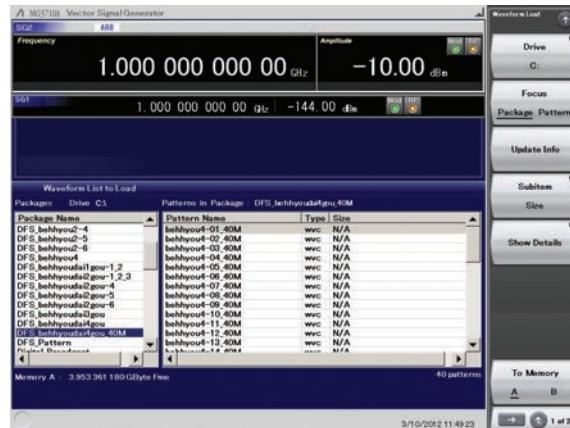
Selecting Waveform Pattern

• Interference Waveform Patterns

System	Waveform Pattern Name	File Size [MB]
W-CDMA	W-CDMA_DL_Interferer	153
LTE FDD	FDD_DL_1M4_Interfer	0.1
	FDD_DL_3M_Interfer	0.3
	FDD_DL_5M_Interfer	0.6
	FDD_DL_10M_Interfer	1.2
	FDD_DL_15M_Interfer	1.2
	FDD_DL_20M_Interfer	2.5
LTE TDD	TDD_DL_1M4_Interfer	0.1
	TDD_DL_3M_Interfer	0.3
	TDD_DL_5M_Interfer	0.6
	TDD_DL_10M_Interfer	1.2
	TDD_DL_15M_Interfer	1.2
	TDD_DL_20M_Interfer	2.5
GSM	GMSK_PN9	0.1
TD-SCDMA	TD-SCDMA_DL_Interferer	0.1

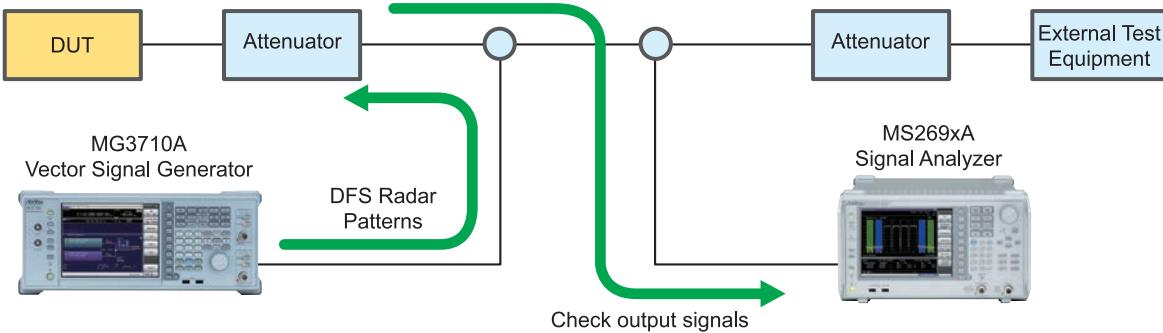
MX370073A DFS Radar Pattern

Optional


DFS Radar Patterns

Installing the MX370073A DFS Radar Pattern option in the MG3710A Vector Signal Generator supports output of TELEC-T403 and FCC06-96 DFS test signals.

Output of complex combinations of pulse, chirp and hopping signals required to support DFS tests is made easy just by selecting combination files supplied with the MX370073A.


* DFS: Dynamic Frequency Selection

- One unit supports pulse, chirp and hopping signals.
- PC not required. Simply selecting prepared waveform pattern outputs various signals.

Selecting Waveform Pattern
(Example: TELEC Waveform Patterns)

Setup

Sequence Function

This standard function switches and outputs multiple waveform patterns continuously.

Standards-compliant test signals can be created by selecting a combination file combining complex patterns of pulse, chirp, hopping, and null signal waveforms.

Sequence Function Display

• TELEC Test Waveform Patterns

Specification No.		Package	Combination File Name	Note	File Size [MB] ^{*2}	
Appended Table 1	Type 1	DFS_behhyoudai1gou-1_2	behhyou_dai1gou-1	Fixed Pulse Radar Signals 1 pattern each	686 (MX370073A all)	
	Type 2		behhyou_dai1gou-2			
Appended Table 2	Type 1	DFS_behhyoudai2gou-1_2_3	behhyou_dai2gou-1			
	Type 2		behhyou_dai2gou-2			
	Type 3		behhyou_dai2gou-3			
	Type 4	DFS_behhyoudai2gou-4	behhyou2-4-1 to behhyou2-4-40	Variable Pulse Radar Signals 40 patterns each		
	Type 5	DFS_behhyoudai2gou-5	behhyou2-5-1 to behhyou2-5-40			
	Type 6	DFS_behhyoudai2gou-6	behhyou2-6-1 to behhyou2-6-40			
Appended Table 3	Type 1	DFS_behhyoudai3gou	behhyou3-1 to behhyou3-40	Variable Chirp Radar Signals 40 patterns each		
Appended Table 4	Type 1	DFS_behhyoudai4gou	behhyou4-01 to behhyou4-40	Frequency Hopping Radar Signals 40 patterns each For DUT 20 MHz detection bandwidth		
		DFS_behhyoudai4gou_40M	behhyou4-01_40M to behhyou4-40_40M	Frequency Hopping Radar Signals 40 patterns each For DUT 40 MHz detection bandwidth		
		DFS_behhyoudai4gou_80M	behhyou4-01_80M to behhyou4-40_80M	Frequency Hopping Radar Signals 40 patterns each For DUT 80 MHz detection bandwidth		
		DFS_behhyoudai4gou_160M ^{*1}	behhyou4-01_160M to behhyou4-40_160M	Frequency Hopping Radar Signals 40 patterns each For DUT 160 MHz detection bandwidth		

• FCC Test Waveform Patterns

Specification No.		Package	Combination File Name	Note	File Size [MB] ^{*2}	
Short Pulse Radar	Type 0	RadarType0	ShortPulse0	Fixed Pulse Radar Signals 1 pattern	686 (MX370073A all)	
	Type 1	RadarType1	Test A: ShortPulse1A-01 to ShortPulse1A-23	Variable Pulse Radar Signals 23 patterns each		
			Test B: ShortPulse1B-01 to ShortPulse1B-15	Variable Pulse Radar Signals 15 patterns each		
	Type 2	RadarType2	ShortPulse2-01 to ShortPulse2-40	Variable Pulse Radar Signals 40 patterns each		
	Type 3	RadarType3	ShortPulse3-01 to ShortPulse3-40			
	Type 4	RadarType4	ShortPulse4-01 to ShortPulse4-40			
Long Pulse Radar	Type 5	RadarType5	LongPulse-01 to LongPulse-40	Variable Chirp Radar Signals 40 patterns each		
Frequency Hopping Radar	Type 6	RadarType6_20M	Hopping_20M-01 to Hopping_20M-40	Frequency Hopping Radar Signals 40 patterns each For 20 MHz DUT detection bandwidth	686 (MX370073A all)	
		RadarType6_40M	Hopping_40M-01 to Hopping_40M-40	Frequency Hopping Radar Signals 40 patterns each For 40 MHz DUT detection bandwidth		
		RadarType6_80M	Hopping_80M-01 to Hopping_80M-40	Frequency Hopping Radar Signals 40 patterns each For 80 MHz DUT detection bandwidth		
		RadarType6_160M ^{*1}	Hopping_160M-01 to Hopping_160M-40	Frequency Hopping Radar Signals 40 patterns each For 160 MHz DUT detection bandwidth		

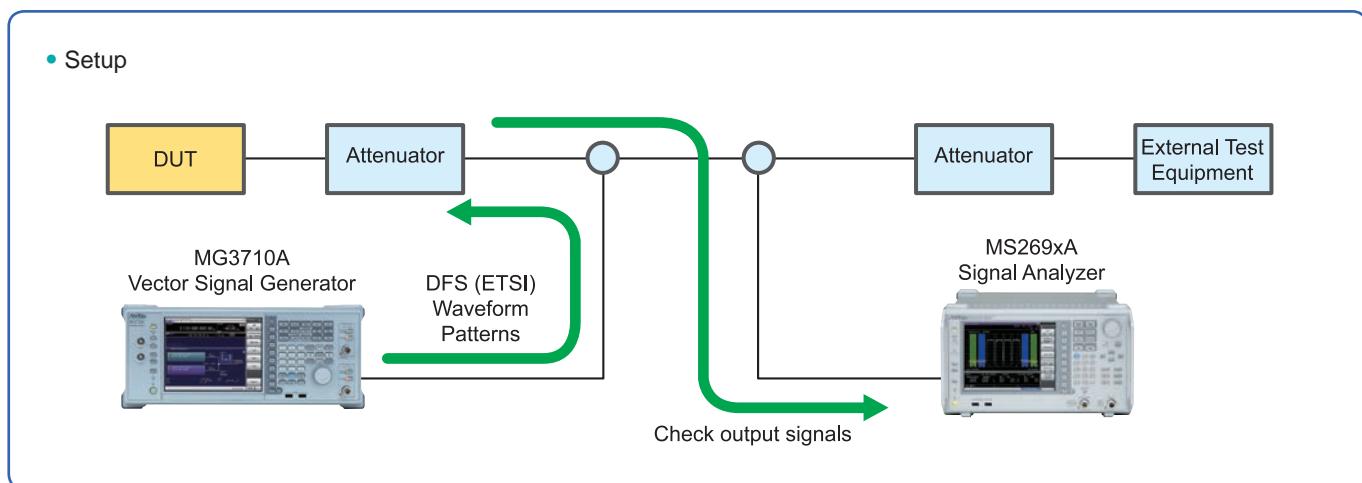
*1:This waveform pattern is available only for the MG3710A.

*2:Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.

Consider this when selecting the ARB memory upgrade option.

MX370075A DFS (ETSI) Waveform Pattern

Optional


DFS (ETSI) Waveform Patterns

Installing the MX370075A DFS (ETSI) Waveform Pattern option in the MG3710A Vector Signal Generator supports output of ETSI EN 301 893 DFS test signals.

Output of complex combinations of pulse and chirp signals required to support DFS tests is made easy just by selecting combination files supplied with the MX370075A.

* DFS: Dynamic Frequency Selection

- One unit supports pulse and chirp signals.
- PC not required. Simply selecting prepared waveform pattern outputs various signals.

• Sequence Function

This standard function switches and outputs multiple waveform patterns continuously.

Standards-compliant test signals can be created by combining complex patterns of pulse, chirp, and null signal waveforms.

Users can output pulse and chirp signals for DFS tests easily just by selecting a combination file with this sequence information.

• ETSI Test Waveform Patterns

Specification No.	Package	Combination File Name	Note	File Size [MB]
Reference Signal	ReferenceDFSSignal	ReferenceDFSSignal	Fixed Pulse Radar Signals One pattern	
Radar Test Signal	1	TestSignal-1_Single	TestSignal-1_S_00 to TestSignal-1_S_19	Variable Pulse Radar Signals for single burst Twenty patterns
			TestSignal-1B_S_00 to TestSignal-1B_S_19	Variable Pulse Radar Signals for single burst Twenty patterns Used from 5600 MHz to 5650 MHz
		TestSignal-1_Multi	TestSignal-1_M_00 to TestSignal-1_M_19	Variable Pulse Radar Signals for multi-burst Twenty patterns
			TestSignal-1B_M_00 to TestSignal-1B_M_19	Variable Pulse Radar Signals for multi-burst Twenty patterns Used from 5600 MHz to 5650 MHz
			TestSignal-2_S_00 to TestSignal-2_S_19	Variable Pulse Radar Signals for single burst Twenty patterns
	2	TestSignal-2_Single	TestSignal-2B_S_00 to TestSignal-2B_S_19	Variable Pulse Radar Signals for single burst Twenty patterns Used from 5600 MHz to 5650 MHz
			TestSignal-2_M_00 to TestSignal-2_M_19	Variable Pulse Radar Signals for multi-burst Twenty patterns
		TestSignal-2_Multi	TestSignal-2B_M_00 to TestSignal-2B_M_19	Variable Pulse Radar Signals for multi-burst Twenty patterns Used from 5600 MHz to 5650 MHz
			TestSignal-3_S_00 to TestSignal-3_S_19	Variable Pulse Radar Signals for single burst Twenty patterns
	3	TestSignal-3_Multi	TestSignal-3_M_00 to TestSignal-3_M_19	Variable Pulse Radar Signals for multi-burst Twenty patterns
	4	TestSignal-4_Single	TestSignal-4_S_00 to TestSignal-4_S_19	Variable Chirp Radar Signals for multi-burst Twenty patterns
		TestSignal-4_Multi	TestSignal-4_M_00 to TestSignal-4_M_19	Variable Chirp Radar Signals for multi-burst Twenty patterns
		5	TestSignal-5_Single	TestSignal-5_S_00 to TestSignal-5_S_19
			TestSignal-5B_S_00 to TestSignal-5B_S_19	Variable Pulse Radar Signals for single burst Twenty patterns Used from 5600 MHz to 5650 MHz
			TestSignal-5_M_00 to TestSignal-5_M_19	Variable Pulse Radar Signals for multi-burst Twenty patterns
			TestSignal-5B_M_00 to TestSignal-5B_M_19	Variable Pulse Radar Signals for multi-burst Twenty patterns Used from 5600 MHz to 5650 MHz
	6	TestSignal-6_Single	TestSignal-6_S_00 to TestSignal-6_S_19	Variable Pulse Radar Signals for single burst Twenty patterns.
			TestSignal-6B_S_00 to TestSignal-6B_S_19	Variable Pulse Radar Signals for single burst Twenty patterns Used from 5600 MHz to 5650 MHz
		TestSignal-6_Multi	TestSignal-6_M_00 to TestSignal-6_M_19	Variable Pulse Radar Signals for multi-burst Twenty patterns
			TestSignal-6B_M_00 to TestSignal-6B_M_19	Variable Pulse Radar Signals for multi-burst Twenty patterns Used from 5600 MHz to 5650 MHz

* Since the recorded file size is rounded up to the nearest 0.1 MB, the true file size may be smaller.

Consider this when selecting the ARB memory upgrade option

600

Ordering Information

Please specify the model/order number, name and quantity when ordering.

The names listed in the chart below are Order Names. The actual name of the item may differ from the Order Name.

Model/Order No.	Name	Remarks
MG3710A	- Main frame - Vector Signal Generator	
P0031A	- Standard accessories - Power Cord: USB Memory Install CD-ROM	1 pc USB2.0 Flash Driver, ≥256 MB Operation manual (PDF) and application software (IQproducer)
MG3710A-001 MG3710A-002 MG3710A-011 MG3710A-017	- Options - (Common Parts) Rubidium Reference Oscillator High Stability Reference Oscillator 2ndary HDD Universal Input/Output	Select when ordering main frame, aging rate: $\pm 1 \times 10^{-10}/\text{month}$ Select when ordering main frame, aging rate: $\pm 1 \times 10^{-7}/\text{year}$ Select when ordering main frame, spare HDD for saving user data without Windows OS Select when ordering main frame, Adds BNC connectors for following signals to rear panel of main frame, includes J1539A AUX Conversion Adapter (Baseband Reference Clock Input/Output, Sweep Output, Local Signal Input/Output)
MG3710A-021	BER Test Function	Select when ordering main frame, Built-in BER measurement, Bit Rate: 100 bps to 40 Mbps
MG3710A-029	OS Upgrade to Windows 7	J1539A AUX Conversion Adapter required for Data/Clock/Enable signal input Select when ordering main frame, Upgrades MG3710A OS to Windows 7 (32 bit, Professional) (retrofit not supported)
MG3710A-101 MG3710A-102 MG3710A-111 MG3710A-117 MG3710A-121 MG3710A-313	Rubidium Reference Oscillator Retrofit High Stability Reference Oscillator Retrofit 2ndary HDD Retrofit Universal Input/Output Retrofit BER Test Function Retrofit Removable HDD	Retrofitted to shipped MG3710A Retrofitted to shipped MG3710A Retrofitted to shipped MG3710A Retrofitted to shipped MG3710A Retrofitted to shipped MG3710A Spare HDD for storing user data with Windows OS MG3710A with Opt. 029 (Windows 7) cannot apply Opt. 313.
MG3710A-032	(For 1stRF) 1stRF 100 kHz to 2.7 GHz	Select when ordering main frame, select 1stRF frequency range, frequency cannot be changed after installation
MG3710A-034	1stRF 100 kHz to 4 GHz	Select when ordering main frame, select 1stRF frequency range, frequency cannot be changed after installation
MG3710A-036	1stRF 100 kHz to 6 GHz	Select when ordering main frame, select 1stRF frequency range, frequency cannot be changed after installation
MG3710A-041 MG3710A-042 MG3710A-043	High Power Extension for 1stRF Low Power Extension for 1stRF Reverse Power Protection for 1stRF	Select when ordering main frame, increases upper limit of output signal power setting range Select when ordering main frame, increases lower limit of output signal power setting range Select when ordering main frame, prevents damage caused by reverse input to output connector
MG3710A-045 MG3710A-046 MG3710A-048 MG3710A-049 MG3710A-050	ARB Memory Upgrade 256 Msample for 1stRF ARB Memory Upgrade 1024 Msample for 1stRF Combination of Baseband Signal for 1stRF AWGN for 1stRF Additional Analog Modulation Input for 1stRF	Select when ordering main frame, expands ARB memory capacity Select when ordering main frame, expands ARB memory capacity Select when ordering main frame, adds baseband combine function Select when ordering main frame, adds AWGN combine function Select when ordering main frame, Adds BNC connector for inputting external signals to rear panel of mainframe.
MG3710A-018 MG3710A-141 MG3710A-142 MG3710A-143 MG3710A-145 MG3710A-146 MG3710A-148 MG3710A-149 MG3710A-150 MG3710A-118	Analog IQ Input/Output High Power Extension for 1stRF Retrofit Low Power Extension for 1stRF Retrofit Reverse Power Protection for 1stRF Retrofit ARB Memory Upgrade 256 Msample for 1stRF Retrofit ARB Memory Upgrade 1024 Msample for 1stRF Retrofit Combination of Baseband Signal for 1stRF Retrofit AWGN for 1stRF Retrofit Additional Analog Modulation Input for 1stRF Retrofit Analog IQ Input/Output Retrofit	Select when ordering main frame, installs IQ input/output BNC connector in main frame Retrofitted to shipped MG3710A Retrofitted to shipped MG3710A
MG3710A-062	(For 2ndRF) 2ndRF 100 kHz to 2.7 GHz	Select when ordering main frame, select 2ndRF frequency range, frequency cannot be changed after installation
MG3710A-064	2ndRF 100 kHz to 4 GHz	Select when ordering main frame, select 2ndRF frequency range, frequency cannot be changed after installation
MG3710A-066	2ndRF 100 kHz to 6 GHz	Select when ordering main frame, select 2ndRF frequency range, frequency cannot be changed after installation
MG3710A-071 MG3710A-072 MG3710A-073 MG3710A-075 MG3710A-076 MG3710A-078 MG3710A-079 MG3710A-080	High Power Extension for 2ndRF Low Power Extension for 2ndRF Reverse Power Protection for 2ndRF ARB Memory Upgrade 256 Msample for 2ndRF ARB Memory Upgrade 1024 Msample for 2ndRF Combination of Baseband Signal for 2ndRF AWGN for 2ndRF Additional Analog Modulation Input for 2ndRF	Select when ordering main frame, increases upper limit of output signal power setting range Select when ordering main frame, increases lower limit of output signal power setting range Select when ordering main frame, prevents damage caused by reverse input to output connector Select when ordering main frame, expands ARB memory capacity Select when ordering main frame, expands ARB memory capacity Select when ordering main frame, adds baseband combine function Select when ordering main frame, adds AWGN combine function Select when ordering main frame, Adds BNC connector for inputting external signals to rear panel of mainframe.
MG3710A-162 MG3710A-164 MG3710A-166 MG3710A-171 MG3710A-172 MG3710A-173 MG3710A-175 MG3710A-176 MG3710A-178 MG3710A-179 MG3710A-180	2ndRF 100 kHz to 2.7 GHz Retrofit 2ndRF 100 kHz to 4 GHz Retrofit 2ndRF 100 kHz to 6 GHz Retrofit High Power Extension for 2ndRF Retrofit Low Power Extension for 2ndRF Retrofit Reverse Power Protection for 2ndRF Retrofit ARB Memory Upgrade 256 Msample for 2ndRF Retrofit ARB Memory Upgrade 1024 Msample for 2ndRF Retrofit Combination of Baseband Signal for 2ndRF Retrofit AWGN for 2ndRF Retrofit Additional Analog Modulation Input for 2ndRF Retrofit	Retrofitted to shipped MG3710A when 2ndRF not installed Retrofitted to shipped MG3710A when 2ndRF not installed Retrofitted to shipped MG3710A when 2ndRF not installed Retrofitted to shipped MG3710A Retrofitted to shipped MG3710A
MG3710A-ES210 MG3710A-ES310 MG3710A-ES510	- Maintenance service - 2 Years Extended Warranty Service 3 Years Extended Warranty Service 5 Years Extended Warranty Service	

Ordering Information

Model/Order No.	Name	Remarks
MX370073A	- Softwares - (Waveform pattern) DFS Radar Pattern	(License for waveform patterns) WLAN 5.3/5.6 GHz band DFS tests (for TELEC and FCC) waveform pattern, license for main frame, manual (PDF)
MX370075A MX370084A	DFS (ETSI) Waveform Pattern ISDB-Tmm Waveform Pattern	WLAN 5.3/5.6 GHz DFS test (ETSI) waveform pattern, license for main frame, manual (PDF) ISDB-Tmm Waveform Patterns, license for main frame, manual (PDF)
MX370101A MX370102A MX370103A MX370104A MX370105A MX370106A MX370107A MX370108A MX370108A-001 MX370110A MX370110A-001 MX370111A MX370111A-002	- Softwares - (IQproducer) HSDPA/HSUPA IQproducer TDMA IQproducer CDMA2000 1xEV-DO IQproducer Multi-carrier IQproducer Mobile WiMAX IQproducer DVB-T/H IQproducer Fading IQproducer LTE IQproducer LTE-Advanced FDD Option LTE TDD IQproducer LTE-Advanced TDD Option WLAN IQproducer 802.11ac (160 MHz) Option	(License for IQproducer) IQproducer software, license for main frame, manual (PDF) IQproducer software, license for main frame, manual (PDF) Only for MG3710A. Requires MX370111A. IQproducer software, license for main frame, manual (PDF)
MX370112A	TD-SCDMA IQproducer	IQproducer software, license for main frame, manual (PDF)
W3580AE W2496AE W3581AE	- Optional accessories - MG3710A/MG3740A Operation Manual (Main Unit) MG3710A/MG3740A Operation Manual (IQproducer) MG3710A Operation Manual (Pre-installed Waveform Patterns)	Booklet, for MG3710A/MG3740A Main Frame (Operation, Remote Control) Booklet, for IQproducer (Operation for Common Parts) Booklet, for Pre-installed Waveform Patterns (Usage, Detailed Parameters)
W3596AE W3597AE W3508AE W2915AE W2916AE W2505AE W2917AE W2918AE W2798AE W2995AE W3023AE W3221AE W3488AE W3582AE	MG370073A Operation Manual MG370075A Operation Manual MG370084A Operation Manual MG370101A Operation Manual MG370102A Operation Manual MG370103A Operation Manual MG370104A Operation Manual MG370105A Operation Manual MG370106A Operation Manual MG370107A Operation Manual MG370108A Operation Manual MG370110A Operation Manual MG370111A Operation Manual MG370112A Operation Manual	Booklet, for DFS (TELEC and FCC) Waveform Patterns Booklet, for DFS (ETSI) Waveform Patterns Booklet, for ISDB-Tmm Waveform Patterns Booklet, for HSDPA/HSUPA IQproducer Booklet, for TDMA IQproducer Booklet, for CDMA2000 1xEV-DO IQproducer Booklet, for Multi-carrier IQproducer Booklet, for Mobile WiMAX IQproducer Booklet, for DVB-T/H IQproducer Booklet, for Fading IQproducer Booklet, for LTE IQproducer/LTE-Advanced FDD Option Booklet, for LTE TDD IQproducer/LTE-Advanced TDD Option Booklet, for WLAN IQproducer/802.11ac Option Booklet, for TD-SCDMA IQproducer
J1539A Z1594A MA24105A MA24106A MA24108A MA24118A MA24126A K240B	AUX Conversion Adapter Standard Waveform Pattern for Backup Inline Peak Power Sensor USB Power Sensor Microwave USB Power Sensor Microwave USB Power Sensor Microwave USB Power Sensor Power Divider (K connector)	Converts MG3710A rear-panel AUX connector to BNC connector Latest MG3710A Pre-installed waveform pattern set for backup 350 MHz to 4 GHz, Inline type, with USB A to micro-B Cable 50 MHz to 6 GHz, with USB A to mini-B Cable 10 MHz to 8 GHz, with USB A to micro-B Cable 10 MHz to 18 GHz, with USB A to micro-B Cable 10 MHz to 26 GHz, with USB A to micro-B Cable DC to 26.5 GHz, K-J, 50 Ω, 1 Wmax
MA1612A MP752A MA2512A J0576B J0576D J0127A J0127B J0127C J0322A J0322B J0322C J0322D J0004 J1261B J1261D J0008 B0635A B0657A B0636A B0645A Z0975A Z0541A	Four-Port Junction Pad Termination Band Pass Filter Coaxial Cord, 1.0 m Coaxial Cord, 2.0 m Coaxial Cord, 1.0 m Coaxial Cord, 2.0 m Coaxial Cord, 0.5 m Coaxial Cord, 0.5 m Coaxial Cord, 1.0 m Coaxial Cord, 1.5 m Coaxial Cord, 2.0 m Coaxial Adapter Ethernet Cable (Shield Type) Ethernet Cable (Shield Type) GPIB Cable, 2.0 m Rack Mount Kit Rack Mount Kit (JIS) Carrying Case Soft Carrying Case Keyboard (USB) USB Mouse	5 MHz to 3 GHz, N-J DC to 12.4 GHz, 50 Ω, N-P For W-CDMA, passband: 1.92 GHz to 2.17 GHz N-P · 5D-2W · N-P N-P · 5D-2W · N-P BNC-P · RG-58A/U · BNC-P BNC-P · RG-58A/U · BNC-P BNC-P · RG-58A/U · BNC-P SMA-P · SMA-P, DC to 18 GHz, 50 Ω SMA-P · SMA-P, DC to 18 GHz, 50 Ω SMA-P · SMA-P, DC to 18 GHz, 50 Ω SMA-P · SMA-P, DC to 18 GHz, 50 Ω N-P · SMA-J Conversion Adapter, DC to 12.4 GHz Straight-through, 3 m Crossover, 3 m EIA JIS Hard Type, With Casters Soft Type

Typical (typ.): Performance not warranted. Must products meet typical performance.

Nominal (nom.): Values not warranted. Included to facilitate application of product.

Measured (meas.): Performance not warranted. Data actually measured by randomly selected measuring instruments.

Trademarks:

- IQproducer™ is a registered trademark of Anritsu Corporation.
- MATLAB® is a registered trademark of The MathWorks, Inc.
- CDMA2000® is a registered trademark of the Telecommunications Industry Association (TIA-USA).
- The Bluetooth® mark and logos are owned by Bluetooth SIG, Inc. and are used by Anritsu under license.
- Pentium® is registered trademarks of Intel Corporation or its subsidiaries in the USA and other countries.
- Windows® is a registered trademark of Microsoft Corporation in the USA and other countries.
- WiMAX® is a trademark or registered trademark of WiMAX Forum.
- Other companies, product names and service names are registered trademarks of their respective companies.

Note:

Note:

● **United States**

Anritsu Company

1155 East Collins Blvd., Suite 100, Richardson, TX 75081, U.S.A.
Toll Free: 1-800-267-4878
Phone: +1-972-644-1777
Fax: +1-972-671-1877

● **Canada**

Anritsu Electronics Ltd.

700 Silver Seven Road, Suite 120, Kanata, Ontario K2V 1C3, Canada
Phone: +1-613-591-2003
Fax: +1-613-591-1006

● **Brazil**

Anritsu Eletronica Ltda.

Praça Amadeu Amaral, 27 - 1 Andar
01327-010 - Bela Vista - São Paulo - SP
Brazil
Phone: +55-11-3283-2511
Fax: +55-11-3288-6940

● **Mexico**

Anritsu Company, S.A. de C.V.

Av. Ejército Nacional No. 579 Piso 9, Col. Granada
11520 México, D.F., México
Phone: +52-55-1101-2370
Fax: +52-55-5254-3147

● **United Kingdom**

Anritsu EMEA Ltd.

200 Capability Green, Luton, Bedfordshire, LU1 3LU, U.K.
Phone: +44-1582-433200
Fax: +44-1582-731303

● **France**

Anritsu S.A.

12 avenue du Québec, Bâtiment Iris 1- Silic 612,
91140 VILLEBON SUR YVETTE, France
Phone: +33-1-60-92-15-50
Fax: +33-1-64-46-10-65

● **Germany**

Anritsu GmbH

Nemetschek Haus, Konrad-Zuse-Platz 1
81829 München, Germany
Phone: +49-89-442308-0
Fax: +49-89-442308-55

● **Italy**

Anritsu S.r.l.

Via Elio Vittorini 129, 00144 Roma, Italy
Phone: +39-6-509-9711
Fax: +39-6-502-2425

● **Sweden**

Anritsu AB

Kistagången 20B, 164 40 KISTA, Sweden
Phone: +46-8-534-707-00
Fax: +46-8-534-707-30

● **Finland**

Anritsu AB

Teknolevardi 3-5, FI-01530 VANTAA, Finland
Phone: +358-20-741-8100
Fax: +358-20-741-8111

● **Denmark**

Anritsu A/S

Kay Fiskers Plads 9, 2300 Copenhagen S, Denmark
Phone: +45-7211-2200
Fax: +45-7211-2210

● **Russia**

Anritsu EMEA Ltd.

Representation Office in Russia

Tverskaya str. 16/2, bld. 1, 7th floor.
Moscow, 125009, Russia
Phone: +7-495-363-1694
Fax: +7-495-935-8962

● **Spain**

Anritsu EMEA Ltd.

Representation Office in Spain

Edificio Cuzco IV, P. de la Castellana, 141, Pta. 8
28046, Madrid, Spain
Phone: +34-915-726-761
Fax: +34-915-726-621

● **United Arab Emirates**

Anritsu EMEA Ltd.

Dubai Liaison Office

902, Aurora Tower,
P O Box: 500311- Dubai Internet City
Dubai, United Arab Emirates
Phone: +971-4-3758479
Fax: +971-4-4249036

● **India**

Anritsu India Private Limited

2nd & 3rd Floor, #837/1, Binnamangla 1st Stage,
Indiranagar, 100ft Road, Bangalore - 560038, India
Phone: +91-80-4058-1300
Fax: +91-80-4058-1301

● **Singapore**

Anritsu Pte. Ltd.

11 Chang Charn Road, #04-01, Shiro House
Singapore 159640
Phone: +65-6282-2400
Fax: +65-6282-2533

● **P.R. China (Shanghai)**

Anritsu (China) Co., Ltd.

Room 2701-2705, Tower A,
New Caohejing International Business Center
No. 391 Gui Ping Road Shanghai, 200233, P.R. China
Phone: +86-21-6237-0898
Fax: +86-21-6237-0899

● **P.R. China (Hong Kong)**

Anritsu Company Ltd.

Unit 1006-7, 10/F., Greenfield Tower, Concordia Plaza,
No. 1 Science Museum Road, Tsim Sha Tsui East,
Kowloon, Hong Kong, P.R. China
Phone: +852-2301-4980
Fax: +852-2301-3545

● **Japan**

Anritsu Corporation

8-5, Tamura-cho, Atsugi-shi, Kanagawa, 243-0016 Japan
Phone: +81-46-296-6509
Fax: +81-46-225-8359

● **Korea**

Anritsu Corporation, Ltd.

5FL, 235 Pangyoek-ro, Bundang-gu, Seongnam-si,
Gyeonggi-do, 13494 Korea
Phone: +82-31-696-7750
Fax: +82-31-696-7751

● **Australia**

Anritsu Pty. Ltd.

Unit 20, 21-35 Ricketts Road,
Mount Waverley, Victoria 3149, Australia
Phone: +61-3-9558-8177
Fax: +61-3-9558-8255

● **Taiwan**

Anritsu Company Inc.

7F, No. 316, Sec. 1, NeiHu Rd., Taipei 114, Taiwan
Phone: +886-2-8751-1816
Fax: +886-2-8751-1817

Please Contact: